Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from sklearn import datasets | |
from sklearn.model_selection import train_test_split | |
from sklearn.naive_bayes import GaussianNB | |
from sklearn.metrics import accuracy_score | |
import matplotlib.pyplot as plt | |
from sklearn.metrics import confusion_matrix | |
class naive_bayes_st: | |
def __init__(self, database, test_size=0.2): | |
self.database = database | |
self.test_size = test_size | |
self.desc = r''' | |
# **Naive Bayes** | |
Particularmente, este algoritmo no lo conocía, y por lo que he visto hasta ahora funciona como un **clasificador** basándose principalmente en el **teorema de bayes**. | |
**Teorema de bayes** | |
$$ | |
P(A/B) = \frac{P(B/A) \cdot P(A)}{P(B)} | |
$$ | |
Eso sí, para aprovechar este teorema es que se tiene que cumplir la condición de que los atributos o **componentes del vector X sean independientes entre sí (Se asume que los eventos son independientes)**. | |
$$ | |
P(y/X) = \frac{P(X/y) \cdot P(y)}{P(X)} = \frac{P(x_{1}/y) \quad ... \quad P(x_{n}/y) \cdot P(y)}{P(X)} | |
$$ | |
Así, luego la manera de escoger a que clasificación pertenece el vector X, es calculando todas las probabilidades condicionales (**Nota**: el $P(x)$ lo podemos omitir ya que va a estar presente en todas las ecuaciones) | |
$$ | |
y = argmax_{y} \quad P(x_{1}/y) \quad ... \quad P(x_{n}/y) \cdot P(y) | |
$$ | |
$$ | |
y = argmax_{y} \quad log(P(x_{1}/y)) + \quad ... \quad + log(P(x_{n}/y)) + log(P(y)) | |
$$ | |
**Por último, nos falta definir:** | |
$P(y)$: Frecuencia (cantidad de veces que está presente la clasificación y en los datos) | |
$$ | |
P(x_{i}/y) = \frac{1}{\sqrt{2\pi \sigma_{y}^{2}}} \cdot e^{(-\frac{(x_{i} - \mu_{y})^2}{2σ_{y}^{2}})} | |
$$ | |
''' | |
def solve(self): | |
self.X, self.y = self.database.data, self.database.target | |
X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=self.test_size, random_state=1234) | |
self.sklearn_clf = GaussianNB() | |
self.sklearn_clf.fit(X_train, y_train) | |
y_pred = self.sklearn_clf.predict(X_test) | |
acc = accuracy_score(y_pred, y_test) | |
c1, c2 = st.columns([4, 1]) | |
c2.metric('Acierto', value=f'{np.round(acc, 2)*100}%') | |
df = pd.DataFrame(confusion_matrix(y_pred, y_test)) | |
labels = self.database.target_names | |
df.columns = labels | |
df.index = labels | |
c1.write('**Confusion Matrix**') | |
c1.dataframe(df) | |
def visualization(self): | |
n_features = int(self.database.data.shape[1]) | |
self.x_feature = st.slider('Variables en eje x', 1, n_features, 1) | |
self.y_feature = st.slider('Variables en eje y', 1, n_features, 2) | |
self.X = np.c_[self.database.data[:, self.x_feature-1:self.x_feature], self.database.data[:, self.y_feature-1:self.y_feature]] | |
self.y = self.database.target | |
X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=self.test_size, random_state=1234) | |
self.sklearn_clf = GaussianNB() | |
self.sklearn_clf.fit(X_train, y_train) | |
x1_min, x1_max = self.X[:, 0].min() - 0.5, self.X[:, 0].max() + 0.5 | |
x2_min, x2_max = self.X[:, 1].min() - 0.5, self.X[:, 1].max() + 0.5 | |
h = 0.02 # Salto que vamos dando | |
x1_i = np.arange(x1_min, x1_max, h) | |
x2_i = np.arange(x2_min, x2_max, h) | |
x1_x1, x2_x2 = np.meshgrid(x1_i, x2_i) | |
y_pred = self.sklearn_clf.predict(np.c_[x1_x1.ravel(), x2_x2.ravel()]) | |
y_pred = y_pred.reshape(x1_x1.shape) | |
plt.figure(1, figsize=(12, 8)) | |
plt.pcolormesh(x1_x1, x2_x2, y_pred, cmap=plt.cm.Paired) | |
plt.scatter(self.X[:, 0], self.X[:, 1], c=self.y, edgecolors='k', cmap=plt.cm.Paired) | |
plt.xlim(x1_x1.min(), x1_x1.max()) | |
plt.ylim(x2_x2.min(), x2_x2.max()) | |
return plt.gcf() | |