sklearn_demo / SVC.py
raaraya's picture
Upload 15 files
42d0bac
raw
history blame
4.84 kB
import streamlit as st
import pandas as pd
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
class SVC_st:
def __init__(self, database, test_size=0.2):
self.database = database
self.test_size = test_size
self.desc = r'''
# **Support Vector Machine**
Este algoritmo tiene por objetivo la b煤squeda de un hiperplano que segregue los datos atendiendo a estas dos condiciones:
$$
wx - b = 0
$$
$$
max \quad \frac{2}{||w||}
$$
**Linear model (2 categor铆as (1 y -1))**
$$
wx - b = 0
$$
$$
wx_{i} - b \geq 1 \quad si \quad y_{i} = 1
$$
$$
wx_{i} - b \leq 1 \quad si \quad y_{i} = -1
$$
**Estas 3 ecuaciones se resumen en la siguiente:**
$$
y_{i}(wx_{i} - b) \geq 1
$$
**Funci贸n de costos (loss)**
$$
loss = 位||w||^2 + \frac{1}{n} \sum_{i=1}^{n} max(0, 1-y_{i}(wx_{i}-b))
$$
De esta manera las **derivadas** en funci贸n de los par谩metros siguen las siguientes reglas:
- si $y_{i}(xw - b) \geq 1$:
$$
\left[\begin{array}{ll} \frac{d_{loss}}{d_{w_{k}}} \\ \frac{d_{loss}}{db} \end{array} \right] = \left [\begin{array}{ll} 2 \lambda w_{k} \\ 0 \end{array} \right]
$$
- si $y_{i}(xw - b) < 1$:
$$
\left[\begin{array}{ll}\frac{d_{loss}}{d_{w_{k}}} \\ \frac{d_{loss}}{db} \end{array} \right] = \left[\begin{array}{ll} 2\lambda w_{k} - y_{i} \cdot x_{i} \\ y_{i} \end{array} \right]
$$
**Reglas de actualizaci贸n (Gradient Descent)**
- Inicializar par谩metros
- Iterar
- Calcular loss
- Calcular gradiente
- Actualizar par谩metros
$$
w = w - lr \cdot dw
$$
$$
b = b - lr \cdot db
$$
- Terminar de iterar
'''
self.kernel = 'linear'
self.gamma = 2
self.degree = 3
def params(self):
tipo = st.selectbox('Tipo de kernel', options=['linear',
'poly',
'rbf'])
self.kernel = tipo
self.gamma = st.slider('Parametro gamma', 1, 10, 2)
if tipo == 'poly': self.degree = st.slider('Cantidad de grados del polinomio', 1, 10, 3)
def solve(self):
self.X, self.y = self.database.data, self.database.target
X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=self.test_size, random_state=1234)
self.sklearn_clf = svm.SVC(kernel=self.kernel, gamma=self.gamma, random_state=1234)
self.sklearn_clf.fit(X_train, y_train)
y_pred = self.sklearn_clf.predict(X_test)
acc = accuracy_score(y_pred, y_test)
c1, c2 = st.columns([4, 1])
c2.metric('Acierto', value=f'{np.round(acc, 2)*100}%')
df = pd.DataFrame(confusion_matrix(y_pred, y_test))
labels = self.database.target_names
df.columns = labels
df.index = labels
c1.write('**Confusion Matrix**')
c1.dataframe(df)
def visualization(self):
n_features = int(self.database.data.shape[1])
self.x_feature = st.slider('Variables en eje x', 1, n_features, 1)
self.y_feature = st.slider('Variables en eje y', 1, n_features, 2)
self.X = np.c_[self.database.data[:, self.x_feature-1:self.x_feature], self.database.data[:, self.y_feature-1:self.y_feature]]
self.y = self.database.target
X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=self.test_size, random_state=1234)
self.sklearn_clf = svm.SVC(kernel=self.kernel, gamma=self.gamma, random_state=1234)
self.sklearn_clf.fit(X_train, y_train)
x1_min, x1_max = self.X[:, 0].min() - 0.5, self.X[:, 0].max() + 0.5
x2_min, x2_max = self.X[:, 1].min() - 0.5, self.X[:, 1].max() + 0.5
h = 0.02 # Salto que vamos dando
x1_i = np.arange(x1_min, x1_max, h)
x2_i = np.arange(x2_min, x2_max, h)
x1_x1, x2_x2 = np.meshgrid(x1_i, x2_i)
y_pred = self.sklearn_clf.predict(np.c_[x1_x1.ravel(), x2_x2.ravel()])
y_pred = y_pred.reshape(x1_x1.shape)
plt.figure(1, figsize=(12, 8))
plt.pcolormesh(x1_x1, x2_x2, y_pred, cmap=plt.cm.Paired)
plt.scatter(self.X[:, 0], self.X[:, 1], c=self.y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlim(x1_x1.min(), x1_x1.max())
plt.ylim(x2_x2.min(), x2_x2.max())
return plt.gcf()