Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from sklearn import datasets | |
from sklearn.model_selection import train_test_split | |
from sklearn import svm | |
from sklearn.metrics import accuracy_score | |
import matplotlib.pyplot as plt | |
from sklearn.metrics import confusion_matrix | |
class SVC_st: | |
def __init__(self, database, test_size=0.2): | |
self.database = database | |
self.test_size = test_size | |
self.desc = r''' | |
# **Support Vector Machine** | |
Este algoritmo tiene por objetivo la b煤squeda de un hiperplano que segregue los datos atendiendo a estas dos condiciones: | |
$$ | |
wx - b = 0 | |
$$ | |
$$ | |
max \quad \frac{2}{||w||} | |
$$ | |
**Linear model (2 categor铆as (1 y -1))** | |
$$ | |
wx - b = 0 | |
$$ | |
$$ | |
wx_{i} - b \geq 1 \quad si \quad y_{i} = 1 | |
$$ | |
$$ | |
wx_{i} - b \leq 1 \quad si \quad y_{i} = -1 | |
$$ | |
**Estas 3 ecuaciones se resumen en la siguiente:** | |
$$ | |
y_{i}(wx_{i} - b) \geq 1 | |
$$ | |
**Funci贸n de costos (loss)** | |
$$ | |
loss = 位||w||^2 + \frac{1}{n} \sum_{i=1}^{n} max(0, 1-y_{i}(wx_{i}-b)) | |
$$ | |
De esta manera las **derivadas** en funci贸n de los par谩metros siguen las siguientes reglas: | |
- si $y_{i}(xw - b) \geq 1$: | |
$$ | |
\left[\begin{array}{ll} \frac{d_{loss}}{d_{w_{k}}} \\ \frac{d_{loss}}{db} \end{array} \right] = \left [\begin{array}{ll} 2 \lambda w_{k} \\ 0 \end{array} \right] | |
$$ | |
- si $y_{i}(xw - b) < 1$: | |
$$ | |
\left[\begin{array}{ll}\frac{d_{loss}}{d_{w_{k}}} \\ \frac{d_{loss}}{db} \end{array} \right] = \left[\begin{array}{ll} 2\lambda w_{k} - y_{i} \cdot x_{i} \\ y_{i} \end{array} \right] | |
$$ | |
**Reglas de actualizaci贸n (Gradient Descent)** | |
- Inicializar par谩metros | |
- Iterar | |
- Calcular loss | |
- Calcular gradiente | |
- Actualizar par谩metros | |
$$ | |
w = w - lr \cdot dw | |
$$ | |
$$ | |
b = b - lr \cdot db | |
$$ | |
- Terminar de iterar | |
''' | |
self.kernel = 'linear' | |
self.gamma = 2 | |
self.degree = 3 | |
def params(self): | |
tipo = st.selectbox('Tipo de kernel', options=['linear', | |
'poly', | |
'rbf']) | |
self.kernel = tipo | |
self.gamma = st.slider('Parametro gamma', 1, 10, 2) | |
if tipo == 'poly': self.degree = st.slider('Cantidad de grados del polinomio', 1, 10, 3) | |
def solve(self): | |
self.X, self.y = self.database.data, self.database.target | |
X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=self.test_size, random_state=1234) | |
self.sklearn_clf = svm.SVC(kernel=self.kernel, gamma=self.gamma, random_state=1234) | |
self.sklearn_clf.fit(X_train, y_train) | |
y_pred = self.sklearn_clf.predict(X_test) | |
acc = accuracy_score(y_pred, y_test) | |
c1, c2 = st.columns([4, 1]) | |
c2.metric('Acierto', value=f'{np.round(acc, 2)*100}%') | |
df = pd.DataFrame(confusion_matrix(y_pred, y_test)) | |
labels = self.database.target_names | |
df.columns = labels | |
df.index = labels | |
c1.write('**Confusion Matrix**') | |
c1.dataframe(df) | |
def visualization(self): | |
n_features = int(self.database.data.shape[1]) | |
self.x_feature = st.slider('Variables en eje x', 1, n_features, 1) | |
self.y_feature = st.slider('Variables en eje y', 1, n_features, 2) | |
self.X = np.c_[self.database.data[:, self.x_feature-1:self.x_feature], self.database.data[:, self.y_feature-1:self.y_feature]] | |
self.y = self.database.target | |
X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=self.test_size, random_state=1234) | |
self.sklearn_clf = svm.SVC(kernel=self.kernel, gamma=self.gamma, random_state=1234) | |
self.sklearn_clf.fit(X_train, y_train) | |
x1_min, x1_max = self.X[:, 0].min() - 0.5, self.X[:, 0].max() + 0.5 | |
x2_min, x2_max = self.X[:, 1].min() - 0.5, self.X[:, 1].max() + 0.5 | |
h = 0.02 # Salto que vamos dando | |
x1_i = np.arange(x1_min, x1_max, h) | |
x2_i = np.arange(x2_min, x2_max, h) | |
x1_x1, x2_x2 = np.meshgrid(x1_i, x2_i) | |
y_pred = self.sklearn_clf.predict(np.c_[x1_x1.ravel(), x2_x2.ravel()]) | |
y_pred = y_pred.reshape(x1_x1.shape) | |
plt.figure(1, figsize=(12, 8)) | |
plt.pcolormesh(x1_x1, x2_x2, y_pred, cmap=plt.cm.Paired) | |
plt.scatter(self.X[:, 0], self.X[:, 1], c=self.y, edgecolors='k', cmap=plt.cm.Paired) | |
plt.xlim(x1_x1.min(), x1_x1.max()) | |
plt.ylim(x2_x2.min(), x2_x2.max()) | |
return plt.gcf() | |