Spaces:
Runtime error
Runtime error
File size: 52,726 Bytes
3466da7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 |
from custom_pso import *
import streamlit as st
st.markdown('''
--------------------------------------------------------------
# Custom PSO algorithm for continuous domains
Autor: Rodrigo Araya
Email: [email protected]
''')
st.markdown("------")
st.markdown("### 1. Explicación Algoritmo")
with st.expander("Precedimiento General"):
st.markdown('''
1. **Generar un archivo de tamaño** `nSize=nPart`.
2. **Generar** `nPart` **soluciones iniciales**. Cada solución contiene `nVar` variables.
3. **Evaluar las soluciones** `nPart` **y agregarlas al archivo** ordenadas de la mejor a la peor solución.
4. **Mientras no se cumpla la condición de terminación** (iteraciones > maxiter):
4.1. **Generar nuevas soluciones** utilizando algún solucionador. Las opciones son: ['Random', 'Newton', 'Coulomb'].
4.2. **Agregar las nuevas soluciones al archivo**.
4.3. **Eliminar soluciones duplicadas**.
4.4. **Evaluar las soluciones y ordenarlas** de la mejor a la peor solución.
4.5. **Mantener en el archivo las mejores** `nPar` **soluciones**.
4.6. **Guardar los resultados de la iteración en un historial** (dataframe).
4.7. **Evaluar la condición de terminación**. Si es negativa, regresar al paso 4.1.
''')
st.image('Custom_PSO_workflow.png')
st.markdown("### 2. Metodos")
with st.expander("Random Method"):
c1, c2 = st.columns(2)
c1.markdown('''
Este solucionador genera una solución aleatoria para cada partícula.
Además, también es posible aplicar un método de explotación donde el
espacio de búsqueda se reduce en cada iteración.
1. Verificar `auto_reduce_search_space`.
2.1. Si `auto_reduce_search_space` es True.
2.1.1. Calcular límites `Lo` (lower bond) y `Up` (upper bond) basados en `x_`(soluciones inciales)
2.2. Si `auto_reduce_search_space` es `False`.
2.2.1. Establecer límites `Lo` y `Up` en cero y uno respectivamente
3. Generar nuevas posiciones aleatorias dentro de los límites
4. Ajustar las posiciones si exceden los límites
5. Evaluar las nuevas posiciones utilizando
6. Devolver las nuevas posiciones y evaluaciones
''')
c2.image('Random.jpg')
with st.expander("Newton Method"):
c1, c2 = st.columns(2)
c1.markdown(r'''
El procedimiento que genera las nuevas posiciones de las partículas
se basa en cómo los cuerpos se atraen entre sí a través de una fuerza
de atracción (ley universal de la gravitación). Por lo tanto, el
procedimiento será el siguiente:
1. Se reciben $n$ partículas en posiciones aleatorias dentro del
espacio de búsqueda.
2. A cada partícula se le asigna una masa basada en la solución
proporcionada por la partícula.
- Cuanto mejor sea la solución proporcionada por la partícula,
mayor será la masa asignada.
- Métodos de asignación: Lineal, Exponencial, Cuadrática (se puede
explorar una discusión adicional sobre mejores métodos de asignación).
- En términos simples, se establece un rango de soluciones y se
ajusta a un rango de masa entre 0 y `max_mass` según algún método de
asignación.
3. Sea $F_{ij}$ la fuerza producida entre la partícula $i$ y $j$ ->
$F_{ij} = \frac{G \cdot m_i \cdot m_j}{r^2}$ donde $r$ es la distancia
entre las partículas, $m_i$ y $m_j$ son las masas de $i$ y $j$.
- Por lo tanto, la fuerza resultante sobre la partícula $i$ es
$FR_{i} = \sum_{j=1}^{n} \frac{G \cdot m_i \cdot m_j}{r_{ij}^2}$.
- Además, por la Ley de Newton, $F = m \cdot a$ -> $a = \frac{F}{m}$. Por lo tanto, las velocidades de cada partícula se calculan como $v_f = v_i + a \cdot t$ -> $v_f = v_i + \frac{F}{m} \cdot t$.
- Finalmente, las posiciones se actualizan de la siguiente manera: $x' = x + v_i \cdot t + \frac{a \cdot t^2}{2}$ -> $x' = x + v_i \cdot t + \frac{F}{m} \cdot \frac{t^2}{2}$.
- Aplicando la suposición $v_i=0$ -> $x' = x + \frac{F}{m} \cdot \frac{t^2}{2}$.
''')
c2.image('Newton.jpg')
st.markdown(r'''
Finalmente, si las partículas están demasiado cerca, podría causar un
problema. Si $r_{ij}^{2}$ tiende a cero, entonces la fuerza de atracción sería
demasiado fuerte, llevando a las partículas a separarse abruptamente
entre sí. Para evitar este comportamiento, se establece una pequeña
distancia `0.00000001`. Si la distancia entre dos partículas es menor
que esta distancia, se considerará que ambas partículas han colisionado.
Por último, si más de la mitad de las partículas han colisionado, se
aplicará una función aleatoria para generar nuevas soluciones sobre
un espacio de búsqueda reducido.
''')
with st.expander("Coulomb Method"):
c1, c2 = st.columns(2)
c1.markdown(r'''
1. Se reciben n partículas en posiciones diferentes dentro del espacio
de búsqueda.
2. A cada partícula se le asigna un tipo de carga positiva.
3. La magnitud de la carga de cada partícula está directamente relacionada
con la función objetivo.
- Métodos de Asignación: Lineal, Exponencial, Cuadrática (se pueden
explorar métodos de asignación mejores)
- En resumen, se establece un rango de solución y se ajusta a un
rango de carga entre 0 y `max_q` según algún método de asignación.
4. Cada partícula tiene una velocidad. Estas comienzan en reposo pero
cambiarán a lo largo de las iteraciones del algoritmo.
5. Las `P` partículas con los mejores valores obtenidos de la iteración
permanecerán en reposo y emitirán un campo eléctrico de signo opuesto
(negativo) atrayendo al resto.
- Sea $E = \frac{kQ}{r^2}$ el campo magnético en un punto ubicado a
una distancia $r$ de la fuente.
- Sea $Fe$ la fuerza eléctrica entre el campo magnético y la partícula
-> $Fe = E*q_{0}$ donde $q_{0}$ es la carga de la partícula.
- Sea $F_{ij}$ la fuerza producida entre la partícula $i$ y $j$ ->
$F_{ij} = \frac{k*q_{i}*q_{j}}{r^2}$ donde $r$ es la distancia
entre las partículas, $q_{i}$ y $q_{j}$ son las cargas de $i$ y $j$.
- Por lo tanto, las fuerzas resultantes de la partícula $i$ son
$FR_{i} = \sum_{p=1}^{P} \frac{k*Q_{p}*Q_{i}}{r_{ip}^{2}} + \sum_{j=P+1}^{n} \frac{k*Q_{i}*Q_{j}}{r_{ij}^{2}}$
- Además, por la Ley de Newton, $F=m*a$ -> $Fe=m*a$. Por lo tanto, las
velocidades de cada partícula se calculan $v_{f}=v_{i}+a*t$ -> $v_{f} = v_{i} + (\frac{FR_{i}}{m})*t$
- Las posiciones se actualizan de la siguiente manera
$x = v_{i}*t + \frac{(a*t^{2})}{2}$ -> $x = v_{i}*t + (\frac{FR_{i}}{m})*t^{2}*0.5$
''')
c2.image('Coulomb.jpg')
st.markdown(r'''
Finalmente, si las partículas están demasiado cerca, podría causar un
problema. Si $r_{ij}^{2}$ tiende a cero, entonces la fuerza eléctrica sería
demasiado fuerte, llevando a las partículas a separarse abruptamente
entre sí. Para evitar este comportamiento, se establece una pequeña
distancia `0.00000001`. Si la distancia entre dos partículas es menor
que esta distancia, se considerará que ambas partículas han colisionado.
Por último, si más de la mitad de las partículas han colisionado, se
aplicará una función aleatoria para generar nuevas soluciones sobre
un espacio de búsqueda reducido.
''')
st.markdown("### 3. Codigos")
with st.expander("F_newton.py"):
st.markdown(r'''
```python
import numpy as np
def normaliazed_direction(ori, des):
dir_ = des-ori
nor_dir_ = dir_/np.sqrt(np.sum(dir_**2))
nor_dir_=np.nan_to_num(nor_dir_)
return nor_dir_
def distance(ori, des):
dis_ = des-ori
return dis_
def acc(F, m):
Npar=F.shape[0]
Nvar=F.shape[1]
# Matriz de aceleracion
Ac = np.full((Npar, Nvar), 0.0)
for ind_r, row in enumerate(Ac):
for ind_c, col in enumerate(row):
Ac[ind_r][ind_c]=F[ind_r][ind_c]/m[ind_r]
return Ac
def F_newton(x_, m, minimize=True, G=0.0001, keep_best=False, weight_method='Linear', t=1.0, max_mass=100.0):
""" The procedure that generates the new positions of the particles is based on how bodies are attracted to each other
through an attractive force (universal law of gravitation). Thus, the procedure will be as follows:
1. n particles are created at random positions within the search space.
2. Each particle is assigned a mass based on the solution provided by the particle.
2.1 The better the solution provided by the particle, the greater the assigned mass.
2.2 Assignment methods -> Linear, Exponential, Quadratic (further discussion on better assignment methods can be explored).
2.2.1 In simple terms, a range of solutions is established and adjusted to a charge range between 0 to max_mass according to some assignment method.
3. Let Fij be the force produced between particle i and j -> Fij = G*mi*mj/(r^2) where r is the distance between the particles, mi and mj are the masses of i and j.
3.1 Thus, the resulting force on particle i is FRi = Σ{j=1} G*mi*mj/(rij^2).
3.2 Additionally, by Newton's Law, F = m*a -> a = F/m. Thus, the velocities of each particle are calculated as vf = vi + a*t -> vf = vi + (F/m)*t.
3.3 Finally, the positions are updated as follows: x' = x + vi*t + (a*t^2)/2 -> x' = x + vi*t + (F/m)*(t^2)/2.
3.4 Applying the assumption vi=0 -> x' = x + (F/m)*(t^2)/2.
Args:
x_ (array(size=(Npar, Nvar)): current particle positions
m (array(size=(Npar, 1))): current mass of each particle
minimize (bool, optional): solver objective. Defaults to True.
G (float, optional): gravitational constant. Defaults to 0.0001.
keep_best (bool, optional): It will save the best value obtained in each iteration. Defaults to False.
weight_method (str, optional): method to reassign mass. Defaults to 'Linear'. Options=['Linear', 'Quadratic', 'Exponential'].
t (float, optional): time. Defaults to 1.0.
max_mass (float, optional): upper bound of mass to assing. Defaults to 100.0.
Returns:
F_total, Ac, new_pos: returns the force obtained on each particle, their acceleration,
and their new positions
"""
Npar=x_.shape[0]
Nvar=x_.shape[1]
# Distance Matrix
dis = []
for ind_r, row in enumerate(x_):
for ind_c, col in enumerate(x_):
dis.append(distance(x_[ind_r], x_[ind_c]))
dis=np.array(dis).reshape((Npar,Npar,Nvar))
# Direction Matrix
d = []
for ind_r, row in enumerate(x_):
for ind_c, col in enumerate(x_):
d.append(normaliazed_direction(x_[ind_r], x_[ind_c]))
d=np.array(d).reshape((Npar,Npar,Nvar))
colisioned_part = []
r_2 = np.zeros((Npar, Npar))
for ind_r, row in enumerate(dis):
for ind_c, col in enumerate(dis):
value = dis[ind_r][ind_c]
value_2 = value**2
value_sum = np.sum(value_2)
if value_sum < 0.00000001: # Particles have practically collided. Notice later that F_=0.0 ahead.
r_2[ind_r][ind_c] = 0.0
if ind_r != ind_c:
colisioned_part.append(ind_c)
else:
r_2[ind_r][ind_c] = value_sum
colisioned_part_ = np.unique(np.array(colisioned_part))
# Each particle is assigned a mass magnitude based on the solution provided by the particle.
m=np.array(m)
min_value = m[0]
max_value = m[-1]
if minimize:
m = -1.0*(m-max_value-1.0)
max_value = m[0]
if weight_method=="Linear":
# We adjust the mass according to the following range [0, max_mass].
m = (m/max_value)*max_mass
reverse_ind = [len(m)-i-1 for i in range(len(m))]
m = m[reverse_ind]
elif weight_method=="Quadratic":
# We adjust the mass according to the following range [0, max_mass].
m_2=m**2
m=(m_2/np.max(m_2))*max_mass
reverse_ind = [len(m)-i-1 for i in range(len(m))]
m = m[reverse_ind]
elif weight_method=="Exponential":
# We adjust the mass according to the following range [0, max_mass].
m_exp=np.array([np.exp(i) for i in m])
m=(m_exp/np.max(m_exp))*max_mass
reverse_ind = [len(m)-i-1 for i in range(len(m))]
m = m[reverse_ind]
m = np.nan_to_num(m, nan=0.0001)
Npar=d.shape[0]
Nvar=d.shape[2]
F=np.full((Npar, Npar, Nvar), 0.0)
for ind_r, row in enumerate(dis):
for ind_c, col in enumerate(row):
# The magnitude of the attraction force F_ is calculated.
d_2=r_2[ind_r][ind_c]
if d_2==0:
F_=0.0
else:
m1=m[ind_r]
m2=m[ind_c]
F_=float(G*m1*m2/d_2)
F[ind_r][ind_c]=F_*d[ind_r][ind_c]
F_total = np.sum(F, axis=1)
# Note: Between two particles, the attractive forces will be the same, but not their accelerations.
# Remember that F = M * A -> m1 * a1 = m2 * a2, so if m1 > m2 -> a2 > a1 -> Particles with greater mass have lower acceleration.Ac=acc(F_total, m)
Ac=acc(F_total, m)
Ac = np.nan_to_num(Ac, nan=0.0)
# Finally, Xf = xi + vi * t + 0.5 * acc * (t^2) (Final Position), but if the particles always start at rest (vi=0) -> xf = 0.5 * acc * (t^2).
x__ = 0.5*Ac*(t**2)
new_pos=x_ + x__
if keep_best==True:
best_ind = np.argmin(m)
Ac[best_ind]=0.0
new_pos=x_ + 0.5*Ac*(t**2)
# If more than half of the particles have collided, those that have collided will move randomly within the reduced search space.
max_crash_part=Npar/2
if len(colisioned_part_)>max_crash_part:
lo = np.min(new_pos, axis=0)
up = np.max(new_pos, axis=0)
for i in colisioned_part_:
new_pos[i] = np.random.uniform(low=lo, high=up, size=(1, Nvar))
return F_total, Ac, new_pos
```''')
with st.expander('F_coulomb.py'):
st.markdown('''
```python
import numpy as np
def normaliazed_direction(ori, des):
dir_ = des-ori
nor_dir_ = dir_/np.sqrt(np.sum(dir_**2))
nor_dir_=np.nan_to_num(nor_dir_)
return nor_dir_
def distance(ori, des):
dis_ = des-ori
return dis_
def acc(F, m):
Npar=F.shape[0]
Nvar=F.shape[1]
# Acceleration Matrix
Ac = np.full((Npar, Nvar), 0.0)
for ind_r, row in enumerate(Ac):
for ind_c, col in enumerate(row):
Ac[ind_r][ind_c]=F[ind_r][ind_c]/m[ind_r]
return Ac
def F_coulomb(x, v, q, P, minimize=True, k=0.0001, weight_method='Linear', t=1.0, max_q=100.0):
""" The procedure that generates the new positions of the particles is based on how particles with positive and negative charges move
in electric fields. Thus, the procedure will be as follows:
1. n particles are created at random positions within the search space.
2. Each particle is assigned a positive charge type.
3. The magnitude of each particle's charge is directly related to the objective function.
3.1 Assignment Methods -> Linear, Exponential, Quadratic (better assignment methods can be explored)
3.2 Simply put, a solution range is established and adjusted to a charge range between 0 to max_q according to some assignment method.
4. Each particle holds a velocity. These start at rest but will change over the iterations of the algorithm.
5. The P particles with the best values obtained from the iteration will remain at rest and emit an electric field of opposite sign (negative) attracting the rest.
5.1 Let E = k*Q/r^2 be the magnetic field at a point located at a distance r from the source.
5.2 Let Fe be the electric force between the magnetic field and the particle -> Fe = E*q0 where q0 is the particle's charge.
5.3 Let Fij be the force produced between particle i and j -> Fij = k*qi*qj/(r^2) where r is the distance between the particles, qi and qj are the charges of i and j.
5.4 Thus, the resultant forces of particle i are FRi = sum_{p=1}^P k*Qp*Qi/(rip^2) + sum_{j=P+1}^n k*Qi*Qj/(rij^2)
5.5 Moreover, by Newton's Law, F=m*a -> Fe=m*a. Thus, the velocities of each particle are calculated vf=vi+a*t -> vf = vi + (FRi/m)*t
5.6 The positions are updated as follows x = vi*t + (a*t^2)/2 -> x = vi*t + (FRi/m)*(t^2)/2
Finally, if the particles are too close, it could cause a problem. If rij^2 << 0, then the electric force would be too strong, leading
the particles to abruptly separate from each other. To avoid this behavior, a small distance (0.00000001) is established. If the distance
between two particles is smaller than that distance, it will be considered that both particles have collided. Then, if more than half of
the particles have collided, we will apply a random function to generate new solutions over a reduced search space.
Args:
x (array(size=(Npar, Nvar)): current particle positions
v (array(size=(Npar, Nvar)): current particle velocity
q (array(size=(Npar, 1))): current electric charge of each particle
P (int): quantity of electric fields (the best P particles become electric fields)
minimize (bool, optional): solver objective. Defaults to True.
k (float, optional): electric constant. Defaults to 0.0001.
weight_method (str, optional): method to reassign electric charges. Defaults to 'Linear'. Options=['Linear', 'Quadratic', 'Exponential'].
t (float, optional): time. Defaults to 1.0.
max_q (float, optional): upper bound of electric charge to assing. Defaults to 100.0.
Returns:
F_total, Ac, vf, new_pos: returns the force obtained on each particle, their acceleration, their velocities
and their new positions
"""
Npar=x.shape[0]
Nvar=x.shape[1]
# Distance Matrix
dis = []
for ind_r, row in enumerate(x):
for ind_c, col in enumerate(x):
dis.append(distance(x[ind_r], x[ind_c]))
dis=np.array(dis).reshape((Npar,Npar,Nvar))
# Direction Matrix
d = []
for ind_r, row in enumerate(x):
for ind_c, col in enumerate(x):
d.append(normaliazed_direction(x[ind_r], x[ind_c]))
d=np.array(d).reshape((Npar,Npar,Nvar))
colisioned_part = []
r_2 = np.zeros((Npar, Npar))
for ind_r, row in enumerate(dis):
for ind_c, col in enumerate(dis):
value = dis[ind_r][ind_c]
value_2 = value**2
value_sum = np.sum(value_2)
if value_sum < 0.00000001: # Particles have practically collided. Notice later that fe=0.0 ahead.
r_2[ind_r][ind_c] = 0.0
if ind_r != ind_c:
colisioned_part.append(ind_c)
else:
r_2[ind_r][ind_c] = value_sum
colisioned_part_ = np.unique(np.array(colisioned_part))
# Each particle is assigned an electric charge magnitude based on the solution provided by the particle.
q=np.array(q)
min_value = q[0]
max_value = q[-1]
if minimize:
q = -1.0*(q-max_value-1.0)
max_value = q[0]
if weight_method=="Linear":
# We adjust the charges according to the following range [0, max_q].
q = (q/max_value)*max_q
reverse_ind = [len(q)-i-1 for i in range(len(q))] # It is inverted to give more charge to the particles that are further away.
q = q[reverse_ind]
elif weight_method=="Quadratic":
# We adjust the charges according to the following range [0, max_q].
q_2=q**2
q=(q_2/np.max(q_2))*max_q
reverse_ind = [len(q)-i-1 for i in range(len(q))] # It is inverted to give more charge to the particles that are further away.
q = q[reverse_ind]
elif weight_method=="Exponential":
# We adjust the charges according to the following range [0, max_q].
q_exp=np.array([np.exp(i) for i in q])
q=(q_exp/np.max(q_exp))*max_q
reverse_ind = [len(q)-i-1 for i in range(len(q))] # It is inverted to give more charge to the particles that are further away.
q = q[reverse_ind]
Npar=d.shape[0]
Nvar=d.shape[2]
F=np.full((Npar, Npar, Nvar), 0.0)
for ind_r, row in enumerate(dis):
for ind_c, col in enumerate(row):
# The magnitude of the electric force Fe is calculated.
d_2=r_2[ind_r][ind_c]
if d_2==0:
Fe=0.0
else:
q1=q[ind_r]
q2=q[ind_c]
Fe=float(k*q1*q2/d_2)
if ind_r >= P and ind_c >= P: # Repulsive forces are generated between particles of the same sign.
F[ind_r][ind_c]=-1.0*Fe*d[ind_r][ind_c]
else: # There is attraction between particles and electric fields.
F[ind_r][ind_c]=Fe*d[ind_r][ind_c]
F[:P, :P] = 0.0
F_total = np.sum(F, axis=1)
F_total[:P]=0.0
# Remember that F=ma -> m1*a1 = m2*a2. So, if m1>m2 -> a2>a1 -> Particles with greater mass have less acceleration.
# For this method, the weight of the particle is not important, so we will set them all to be equal to 1.0.
m=np.ones(Npar)
# vf = acc + vi*t
Ac=acc(F_total, m)
vf = Ac + t*v
Ac[:P]=0.0
vf[:P]=0.0 # The velocity of the magnetic fields is set to 0.0.
# Finally, Xf = xi + vi*t + 0.5*acc*(t^2) (Final Position)
x__=v*t + 0.5*Ac*(t**2)
new_pos = x + x__
# If more than half of the particles have collided, those that have collided will move randomly within the reduced search space.
max_crash_part=Npar/2
if len(colisioned_part_)>max_crash_part:
lo = np.min(new_pos, axis=0)
up = np.max(new_pos, axis=0)
for i in colisioned_part_:
new_pos[i] = np.random.uniform(low=lo, high=up, size=(1, Nvar))
return F_total, Ac, vf, new_pos
```
''')
with st.expander("Custom_pso.py"):
st.markdown('''
```python
import math
import numpy as np
import pandas as pd
from F_newton import F_newton
from F_coulomb import F_coulomb
import plotly.graph_objects as go
import plotly.express as px
def Random_(problem, x_, auto_reduce_search_space=False):
""" This solver generates a random solution for each particle. Additionally, it is also possible to
apply an exploitation method where the search space is reduced on each iteration.
Args:
problem (dic): Dictionary that include: objective function, lower bound and upper bound of each variable and optimal solution
x_ (array(size=())): Current position of each particle
auto_reduce_search_space (bool, optional): If True, it update the lower and upper bounds in a way to reduce the search space. Defaults to False.
Returns:
Stemp, S_f: New positions for each particle and their performance after being evaluated with the objective function.
"""
nPart = x_.shape[0]
nVar = x_.shape[1]
if auto_reduce_search_space:
Lo = np.min(x_, axis=0)
Up = np.max(x_, axis=0)
else:
Lo = np.zeros(nVar)
Up = np.ones(nVar)
new_x = np.random.uniform(low=Lo, high=Up, size=(nPart, nVar))
Stemp = np.zeros((nPart,nVar))
for k in range(nPart):
for i in range(nVar):
Stemp[k][i] = new_x[k][i]
if Stemp[k][i] > Up[i]:
Stemp[k][i] = Up[i]
elif Stemp[k][i] < Lo[i]:
Stemp[k][i] = Lo[i]
f,S_r,maximize = mp_evaluator(problem, Stemp)
S_f = np.zeros((nPart,1))
for i in range(len(S_r)):
S_f[i] = f[i]
return Stemp, S_f
def F_newton_(problem, x_, m, Lo, Up, G=0.00001, keep_best=True, weight_method='Linear', t=1.0, max_mass=100.0):
_, _, new_x = F_newton(x_, m, minimize=True, G=G, keep_best=keep_best, weight_method=weight_method, t=t, max_mass=max_mass)
nPart=x_.shape[0]
nVar=x_.shape[1]
Stemp = np.zeros((nPart,nVar))
for k in range(nPart):
for i in range(nVar):
Stemp[k][i] = new_x[k][i]
if Stemp[k][i] > Up[i]:
Stemp[k][i] = Up[i]
elif Stemp[k][i] < Lo[i]:
Stemp[k][i] = Lo[i]
f,S_r,maximize = mp_evaluator(problem, Stemp)
S_f = np.zeros((nPart,1))
for i in range(len(S_r)):
S_f[i] = f[i]
return Stemp, S_f
def F_coulomb_(problem, x_, v, q, P, Lo, Up, k=0.00001, weight_method='Linear', t=1.0, max_q=100.0):
_, _, v, new_x = F_coulomb(x_, v, q, P=P, minimize=True, k=k, weight_method=weight_method, t=t, max_q=max_q)
nPart=x_.shape[0]
nVar=x_.shape[1]
Stemp = np.zeros((nPart,nVar))
for k in range(nPart):
for i in range(nVar):
Stemp[k][i] = new_x[k][i]
if Stemp[k][i] > Up[i]:
Stemp[k][i] = Up[i]
elif Stemp[k][i] < Lo[i]:
Stemp[k][i] = Lo[i]
f,S_r,maximize = mp_evaluator(problem, Stemp)
S_f = np.zeros((nPart,1))
for i in range(len(S_r)):
S_f[i] = f[i]
return Stemp, v, S_f
def evaluator(problem, x):
# Dado que se trabaja bajo el dominio [0, 1] para cada variable, se debe crear una funcion que regrese a los valores a los dominios originales
# Ejemplo (ndim=2): si se tiene el dominio original [-5, 5] y [-2, 2] para la variables x1, x2 y se cambio a [0, 1] y [0, 1] se vuelve al original tras:
# y1=ax+b -> -5 = a*0+b -> b=-5
# y1=ax+b -> 5 = a*1+-5 -> a=10
# y1=10*x+-5
# y2=ax+b -> -2 = a*0+b -> b=-2
# y2=ax+b -> 2 = a*1+-2 -> a=4
# y2=4*x+-2
# Luego se aplica y1(x1) e y2(x2) respectivamente. Extendible a n dimensiones.
# Dado que [0, 1] no cambia, se generaliza la formula b=lb y a=ub-lb -> y_{i} = (ub-lb)_{i}*x + lb_{i}
lb = [var[0] for var in problem['bounds']]
ub = [var[1] for var in problem['bounds']]
x = [(ub[ind]-lb[ind])*i+lb[ind] for ind, i in enumerate(x)]
# calculate fitness
f = problem['f'](x)
fitness = dict(Obj=f)
return fitness
def mp_evaluator(problem, x):
results = [evaluator(problem, c) for c in x]
f = [r['Obj'] for r in results]
# maximization or minimization problem
maximize = False
return (f, [r for r in results],maximize)
def correct_x(problem, x_):
lb = [var[0] for var in problem['bounds']]
ub = [var[1] for var in problem['bounds']]
x = np.empty(x_.shape)
for ind, row in enumerate(x_):
corr_row = np.array([(ub[ind]-lb[ind])*i+lb[ind] for ind, i in enumerate(row)])
x[ind]=corr_row
return x
def custom_pso(problem, nPart, nVar, maxiter, G=0.00001, k=0.0001, keep_best=True, weight_method='Linear', t=1.0, seed=0, max_mass=100.0, solver='Newton', P=3, max_q=100.0, auto_reduce_search_space=False, dinamic=False):
"""The procedure of this algorithm is as follows:
1. Generate a file of size nSize=nPart.
2. Generate nPart initial solutions. Each solution contains nVar variables.
3. Evaluate the nPart solutions and add them to the file ordered from best to worst solution.
4. While the termination condition is not met (iterations > maxiter):
4.1 Generate new solutions using some solver. Options = ['Random', 'Newton', 'Coulomb']
4.2 Add new solutions to the file.
4.3 Remove duplicate solutions.
4.4 Evaluate solutions and sort from best to worst solution.
4.5 Keep in the file the nPar best solutions.
4.6 Save iteration results in a history (dataframe).
4.7 Evaluate termination condition. If negative, return to step 4.1.
Args:
problem (dic): Dictionary that include: objective function, lower bound and upper bound of each variable and optimal solution
nPart (_type_): Quantity of particles
nVar (_type_): Quantity of variables
maxiter (_type_): Maximum number of iterations.
seed (int, optional): set the generation of random numbers. Defaults to 0.
solver (str, optional): solver to apply. Defaults to 'Newton'. Options=['Random', 'Newton', 'Coulomb'].
Random Solver:
auto_reduce_search_space (bool, optional): If True, it update the lower and upper bounds in a way to reduce the search space. Defaults to False.
Newton Solver:
G (float, optional): Gravitational constant. Defaults to 0.00001.
keep_best (bool, optional): It will keep the best value obtained in each iteration. Defaults to True.
weight_method (str, optional): method to reassign particle mass. Defaults to 'Linear'. Options=['Linear', 'Quadratic', 'Exponential'].
t (float, optional): time. Defaults to 1.0.
max_mass (float, optional): upper bound of mass to assing. Defaults to 100.0.
dinamic (bool, optional): It will change the max_mass value depending on the current iteration and difference between best and worst value obteined. Defaults to False.
Coulomb Solver:
P (int): quantity of electric fields (the best P particles become electric fields)
max_q (float, optional): upper bound of electric charge to assing. Defaults to 100.0.
weight_method (str, optional): method to reassign electric charges. Defaults to 'Linear'. Options=['Linear', 'Quadratic', 'Exponential'].
k (float, optional): electric constant. Defaults to 0.0001.
t (float, optional): time. Defaults to 1.0.
dinamic (bool, optional): It will change the max_q value depending on the current iteration and difference between best and worst value obteined. Defaults to False.
Returns:
df, best_var, best_sol: dataframe contening data from all iterations, the best variables and the best value obtained
"""
# number of variables
parameters_v = [f'x{i+1}' for i in range(nVar)]
# number of variables
nVar = len(parameters_v)
# size of solution archive
nSize = nPart
# number of Particules
nPart = nPart
# maximum iterations
maxiter = maxiter
# bounds of variables
Up = [1]*nVar
Lo = [0]*nVar
# dinamic q
din_max_q=max_q
# dinamic mass
din_max_mass = max_mass
# initilize matrices
S = np.zeros((nSize,nVar))
S_f = np.zeros((nSize,1))
# initial velocity
v = np.zeros((nSize,nVar))
# history
columns_ = ['iter']
for i in parameters_v: columns_.append(i)
columns_.append('f')
df = pd.DataFrame(columns=columns_)
# generate first random solution
#np.random.seed(seed)
Srand = np.random.uniform(low=0,high=1,size=(nPart, nVar))
f,S_r,maximize = mp_evaluator(problem, Srand)
for i in range(len(S_r)):
S_f[i] = f[i]
# add responses and "fitness" column to solution
S = np.hstack((Srand, v, S_f))
# sort according to fitness (last column)
S = sorted(S, key=lambda row: row[-1],reverse = maximize)
S = np.array(S)
# save each iteration
iter_n = np.full((nPart, 1), 0.0)
x_ = S[:, 0:nVar]
x = correct_x(problem, x_)
res = np.reshape(S[:, -1], (nPart, 1))
rows=np.hstack((iter_n, x, res))
df_new = pd.DataFrame(rows, columns=columns_)
df = pd.concat([df, df_new])
iterations=1
# iterations
while True:
# get a new solution
if solver == "Random":
Stemp, S_f = Random_(problem, S[:, :nVar], auto_reduce_search_space=auto_reduce_search_space)
elif solver=="Newton":
din_mass=0
if dinamic:
din_mass = ((maxiter-iterations)/(maxiter))*(np.max(S_f)-np.min(S_f))
else:
din_mass=max_mass
m = np.reshape(S[:, -1], (nPart, 1))
Stemp, S_f = F_newton_(problem, S[:, :nVar], m, Lo, Up, G=G, keep_best=keep_best, weight_method=weight_method, t=t, max_mass=din_mass)
elif solver == "Coulomb":
din_q=0
if dinamic:
din_q = ((maxiter-iterations)/(maxiter))*(np.max(S_f)-np.min(S_f))
else:
din_q=max_q
q = np.reshape(S[:, -1], (nPart, 1))
Stemp, v, S_f = F_coulomb_(problem, S[:, :nVar], v, q, P, Lo, Up, k=k, weight_method=weight_method, t=t, max_q=din_q)
# add responses and "fitness" column to solution
Ssample = np.hstack((Stemp, v, S_f))
# add new solutions in the solutions table
Solution_temp = np.vstack((S,Ssample))
# delate duplicated rows
Solution_temp = np.unique(Solution_temp, axis=0)
# sort according to "fitness"
Solution_temp = sorted(Solution_temp, key=lambda row: row[-1],reverse = maximize)
Solution_temp = np.array(Solution_temp)
# keep best solutions
S = Solution_temp[:nSize][:]
# save each iteration
iter_n = np.full((nPart, 1), iterations)
x_ = S[:, 0:nVar]
x = correct_x(problem, x_)
res = np.reshape(S[:, -1], (nPart, 1))
rows=np.hstack((iter_n, x, res))
df_new = pd.DataFrame(rows, columns=columns_)
df = pd.concat([df, df_new])
iterations += 1
if iterations > maxiter:
break
best_sol = np.min(df['f'])
ind_best_sol = np.argmin(df['f'])
best_var = df.iloc[ind_best_sol, 1:len(parameters_v)+1]
return df, best_var, best_sol
# Test Functions.
# Adapted from "https://www.sfu.ca/~ssurjano/optimization.html"
def Ackley(x, a=20.0, b=0.2, c=2.0*np.pi):
d = len(x)
sum1 = np.sum(np.square(x))
sum2 = np.sum(np.array([np.cos(c*i) for i in x]))
term1 = -a * np.exp(-b * np.sqrt(sum1 / d))
term2 = -np.exp(sum2 / d)
return term1 + term2 + a + np.exp(1)
def sixth_Bukin(x):
return 100 * np.sqrt(np.abs(x[1] - 0.01*x[0]**2)) + 0.01*np.abs(x[0] + 10)
def Cross_in_Tray(x):
return -0.0001 * math.pow(np.abs(np.sin(x[0]) * np.sin(x[1]) * np.exp(np.abs(100.0 - np.sqrt(x[0]**2 + x[1]**2)/np.pi)))+1.0, 0.1)
def Drop_Wave(x):
return -1.0*(1.0 + np.cos(12.0 * np.sqrt(x[0]**2 + x[1]**2))) / (0.5 * (x[0]**2 + x[1]**2) + 2.0)
def Eggholder(x):
return -(x[1] + 47.0) * np.sin(np.sqrt(np.abs(x[1] + x[0]/2 + 47.0))) - x[0] * np.sin(np.sqrt(np.abs(x[0] - (x[1] + 47.0))))
def Griewank(x):
sum_part=0.0
prod_part=1.0
for i, xi in enumerate(x):
sum_part += xi/4000.0
prod_part *= np.cos(xi/np.sqrt(i+1))
return sum_part - prod_part + 1.0
def Holder_Table(x):
return -np.abs(np.sin(x[0])*np.cos(x[1])*np.exp(np.abs(1.0-(np.sqrt(x[0]**2 + x[1]**2)/np.pi))))
def Levy(x):
# d dimensions
w1 = 1.0 + (x[0]-1.0)/4.0
wd = 1.0 + (x[-1]-1.0)/4.0
sum_part = 0.0
for i, xi in enumerate(x):
wi = 1.0 + (xi-1.0)/4.0
sum_part += ((wi-1.0)**2)*(1.0 + 10.0*math.pow(np.sin(np.pi*wi+1.0), 2))
return math.pow(np.sin(np.pi*w1), 2) + sum_part + ((wd-1.0)**2)*(1.0 + math.pow(np.sin(2*np.pi*wd), 2))
def Rastrigin(x):
# d dimensions
d = len(x)
sum_part = 0.0
for i, xi in enumerate(x):
sum_part += (xi**2) - 10.0*np.cos(2*np.pi*xi)
return 10*d + sum_part
def second_Schaffe(x):
return 0.5 + (math.pow(np.sin(x[0]**2 + x[1]**2), 2)-0.5)/(1.0 + 0.001*(x[0]**2 + x[1]**2))**2
def fourth_Schaffer(x):
return 0.5 + (math.pow(np.cos(np.abs(x[0]**2 - x[1]**2)), 2)-0.5)/(1.0 + 0.001*(x[0]**2 + x[1]**2))**2
def Schwefel(x):
# d dimensions
d = len(x)
sum_part = 0.0
for xi in x:
sum_part += xi*np.sin(np.sqrt(np.abs(xi)))
return 418.9829*d - sum_part
def Shubert(x):
sum_1 = 0.0
sum_2 = 0.0
for i in np.arange(5):
i = float(i + 1)
sum_1 += i*np.cos((i+1)*x[0] + i)
sum_2 += i*np.cos((i+1)*x[1] + i)
return sum_1*sum_2
def Styblinski_Tang(x):
f = (sum([math.pow(i,4)-16*math.pow(i,2)+5*i for i in x])/2)
return f
def Easom(x):
f = np.cos(x[0])*np.cos(x[1])*np.exp(-(math.pow(x[0]-np.pi, 2) + math.pow(x[1]-np.pi, 2)))
return f
def Bohachevsky(x):
f = x[0]**2 + 2*x[1]**2 -0.3*np.cos(3*np.pi*x[0]) - 0.4*np.cos(4*np.pi*x[1]) + 0.7
return f
def Perm_d_beta(x, d=2, beta=4):
f = 0.0
for i in range(d):
for j in range(d):
f += ((j+1) + beta)*(x[j]**(i+1) - (1/(j+1)**(i+1)))**2
return f
def Rotated_Hyper_Ellipsoid(x, d=2):
f = 0.0
for i in range(d):
for j in range(i+1):
f += x[j]**2
return f
def Sum_of_Different_Powers(x, d=2):
f = 0.0
for i in range(d):
f += np.abs(x[i])**i+1+1
return f
def SUM_SQUARES(x, d=2):
f = 0.0
for i in range(d):
f += (i+1)*x[i]**2
return f
def TRID(x, d=2):
sum_1 = 0.0
sum_2 = 0.0
for i in range(d):
sum_1 += (x[i] - 1)**2
for i in range(d-1):
sum_2 += x[i+1]*x[i]
f = sum_1 + sum_2
return f
def BOOTH(x):
f = (x[0] + 2*x[1] -7)**2 + (2*x[0] + x[1] - 5)**2
return f
def Matyas(x):
f = 0.26*(x[0]**2 + x[1]**2) - 0.48*x[0]*x[1]
return f
def MCCORMICK(x):
f = np.sin(x[0] + x[1]) + (x[0] - x[1])**2 - 1.5*x[0] + 2.5*x[1] + 1
return f
def Power_Sum(x, d=2, b=[8, 18, 44, 114]):
f = 0.0
for i in range(d):
sum_1 = 0.0
for j in range(d):
sum_1 += x[j]**(i+1)
f += (sum_1 - b[i])**2
return f
def Zakharov(x, d=2):
f = 0.0
sum_1 = 0.0
sum_2 = 0.0
sum_3 = 0.0
for i in range(d):
sum_1 += x[i]**2
sum_2 += 0.5*(i+1)*x[i]
sum_3 += 0.5*(i+1)*x[i]
f = sum_1 + sum_2**2 + sum_3**4
return f
def THREE_HUMP_CAMEL(x):
f = 2*x[0]**2 - 1.05*x[0]**4 + (x[0]**6/6) + x[0]*x[1] + x[1]**2
return f
def SIX_HUMP_CAMEL(x):
f = (4 - 2.1*x[0] + (x[0]**4)/3)*x[0]**2 + x[0]*x[1] + (-4 + 4*x[1]**2)*x[1]**2
return f
def DIXON_PRICE(x, d=2):
sum_1 = 0.0
for i in range(d-1):
i = i + 1
sum_1 += (i+1)*(2*x[i]**2 - x[i-1])**2
f = (x[0] - 1)**2 + sum_1
return f
def ROSENBROCK(x, d=2):
f = 0.0
for i in range(d-1):
f += 100*(x[i+1] - x[i]**2)**2 + (x[i] - 1)**2
return f
def DE_JONG(x):
a = [[-32, -16, 0, 16, 32, -32, -16, 0, 16, 32, -32, -16, 0, 16, 32, -32, -16, 0, 16, 32, -32, -16, 0, 16, 32],
[-32, -32, -32, -32, -32, -16, -16, -16, -16, -16, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32]]
sum_1 = 0.0
for i in range(25):
sum_1 += 1/((i+1) + (x[0] - a[0][i])**6 + (x[1] - a[1][i])**6)
f = (0.002 + sum_1)**(-1)
return f
def MICHALEWICZ(x, d=2, m=10):
f = 0.0
for i in range(d):
f += np.sin(x[i])*np.sin(((i+1)*x[i]**2)/np.pi)**(2*m)
f = -f
return f
def BEALE(x):
f = (1.5 - x[0] + x[0]*x[1])**2 + (2.25 - x[0] + x[0]*x[1]**2)**2 + (2.625 - x[0] + x[0]*x[1]**3)**2
return f
def BRANIN(x):
a=1
b=5.1/(4*(np.pi)**2)
c = 5/np.pi
r = 6
s = 10
t = 1/(8*np.pi)
f = a*(x[1] - b*x[0]**2 + c*x[0] - r)**2 + s*(1 - t)*np.cos(x[0]) + s
return f
def GOLDSTEIN_PRICE(x):
f = (1 + ((x[0] + x[1] + 1)**2)*(19 - 14*x[0] + 3*x[0]**2 - 14*x[1] + 6*x[0]*x[1] + 3*x[1]**2))*(30 + ((2*x[0] - 3*x[1])**2)*(18 - 32*x[0] + 12*x[0]**2 + 48*x[1] - 36*x[0]*x[1] + 27*x[1]**2))
return f
def PERM_D_BETA(x, d=2, beta=1):
f = 0.0
for i in range(d):
sum_1 = 0
for j in range(d):
sum_1 += ((j+1)**(i+1) + beta)*((x[j]/(j+1))**(i+1) - 1)
f += sum_1
return f
class test_functions():
def __init__(self) -> None:
self.Ackley_ = {'name':'Ackley', 'f':Ackley, 'bounds':[[-32.768, 32.768], [-32.768, 32.768]], 'opt':[[0.0, 0.0], 0.0]}
self.sixth_Bukin_ = {'name':'sixth_Bukin', 'f':sixth_Bukin, 'bounds':[[-15.0, -5.0], [-3.0, 3.0]], 'opt':[[-10.0, 1.0], 0.0]}
self.Cross_in_Tray_ = {'name':'Cross_in_Tray', 'f':Cross_in_Tray, 'bounds':[[-10.0, 10.0], [-10.0, 10.0]], 'opt':[[[1.3491, -1.3491], [1.3491, 1.3491], [-1.3491, 1.3491], [-1.3491, -1.3491]], -2.06261]}
self.Drop_Wave_ = {'name':'Drop_Wave', 'f':Drop_Wave, 'bounds':[[-5.12, 5.12], [-5.12, 5.12]], 'opt':[[0, 0], -1.0]}
self.Eggholder_ = {'name':'Eggholder', 'f':Eggholder, 'bounds':[[-512.0, 512.0], [-512.0, 512.0]], 'opt':[[512.404, 512.404], -959.6407]}
self.Griewank_ = {'name':'Griewank', 'f':Griewank, 'bounds':[[-600.0, 600.0], [-600.0, 600.0]], 'opt':[[0.0, 0.0], 0.0]}
self.Holder_Table_ = {'name':'Holder_Table', 'f':Holder_Table, 'bounds':[[-10.0, 10.0], [-10.0, 10.0]], 'opt':[[[8.05502, 9.66459], [8.05502, -9.66459], [-8.05502, 9.66459], [-8.05502, -9.66459]], -19.2085]}
self.Levy_ = {'name':'Levy', 'f':Levy, 'bounds':[[-10.0, 10.0], [-10.0, 10.0]], 'opt':[[1.0, 1.0], 0.0]}
self.Rastrigin_ = {'name':'Rastrigin', 'f':Rastrigin, 'bounds':[[-5.12, 5.12], [-5.12, 5.12]], 'opt':[[0.0, 0.0], 0.0]}
self.second_Schaffe_ = {'name':'second_Schaffe', 'f':second_Schaffe, 'bounds':[[-100.0, 100.0], [-100.0, 100.0]], 'opt':[[0.0, 0.0], 0.0]}
self.fourth_Schaffer_ = {'name':'fourth_Schaffer', 'f':fourth_Schaffer, 'bounds':[[-100.0, 100.0], [-100.0, 100.0]], 'opt':[[0.0, 0.0], 0.0]}
self.Schwefel_ = {'name':'Schwefel', 'f':Schwefel, 'bounds':[[-500.0, 500.0], [-500.0, 500.0]], 'opt':[[420.9687, 420.9687], 0.0]}
self.Shubert_ = {'name':'Shubert', 'f':Shubert, 'bounds':[[-10.0, 10.0], [-10.0, 10.0]], 'opt':[[0.0, 0.0], -186.7309]}
self.Styblinski_Tang_ = {'name':'Styblinski_Tang', 'f':Styblinski_Tang, 'bounds':[[-5, 5], [-5, 5]]}
self.Easom_ = {'name':'Easom', 'f':Easom, 'bounds':[[-3, 3], [-3, 3]]}
self.Bohachevsky_ = {'name':'Bohachevsky', 'f':Bohachevsky, 'bounds':[[-100.0, 100.0], [-100.0, 100.0]], 'opt':[[0, 0], 0]}
self.Perm_d_beta_ = {'name':'Perm_d_beta', 'f':Perm_d_beta, 'bounds':[[-2.0, 2.0], [-2.0, 2.0]], 'opt':[[1, 0.5], 0]}
self.Rotated_Hyper_Ellipsoid_ = {'name':'Rotated_Hyper_Ellipsoid', 'f':Rotated_Hyper_Ellipsoid, 'bounds':[[-65.536, 65.536], [-65.536, 65.536]], 'opt':[[0.0, 0.0], 0]}
self.Sum_of_Different_Powers_ = {'name':'Sum_of_Different_Powers', 'f':Sum_of_Different_Powers, 'bounds':[[-1, 1], [-1, 1]], 'opt':[[0.0, 0.0], 0]}
self.SUM_SQUARES_ = {'name':'SUM_SQUARES', 'f':SUM_SQUARES, 'bounds':[[-10, 10], [-10, 10]], 'opt':[[0.0, 0.0], 0]}
self.TRID_ = {'name':'TRID', 'f':TRID, 'bounds':[[-4, 4], [-4, 4]], 'opt':[[2, 2], -2]}
self.BOOTH_ = {'name':'BOOTH', 'f':BOOTH, 'bounds':[[-10, 10], [-10, 10]], 'opt':[[1, 3], 0]}
self.Matyas_ = {'name':'Matyas', 'f':Matyas, 'bounds':[[-10, 10], [-10, 10]], 'opt':[[0, 0], 0]}
self.MCCORMICK_ = {'name':'MCCORMICK', 'f':MCCORMICK, 'bounds':[[-1.5, 4], [-3, 4]], 'opt':[[-0.54719, -1.54719], -1.9133]}
self.Power_Sum_ = {'name':'Power_Sum', 'f':Power_Sum, 'bounds':[[0, 2], [0, 2]]}
self.Zakharov_ = {'name':'Zakharov', 'f':Zakharov, 'bounds':[[-5, 10], [-5, 10]], 'opt':[[0.0, 0.0], 0.0]}
self.THREE_HUMP_CAMEL_ = {'name':'THREE_HUMP_CAMEL', 'f':THREE_HUMP_CAMEL, 'bounds':[[-5, 5], [-5, 5]], 'opt':[[0.0, 0.0], 0.0]}
self.SIX_HUMP_CAMEL_ = {'name':'SIX_HUMP_CAMEL', 'f':SIX_HUMP_CAMEL, 'bounds':[[-3, 3], [-2, 2]], 'opt':[[0.0898, -0.7126], -1.0316]}
self.DIXON_PRICE_ = {'name':'DIXON_PRICE', 'f':DIXON_PRICE, 'bounds':[[-10, 10], [-10, 10]], 'opt':[[1, 1/np.sqrt(2)], 0]}
self.ROSENBROCK_ = {'name':'ROSENBROCK', 'f':ROSENBROCK, 'bounds':[[-5, 10], [-5, 10]], 'opt':[[1, 1], 0]}
self.DE_JONG_ = {'name':'DE_JONG', 'f':DE_JONG, 'bounds':[[-65.536, 65.536], [-65.536, 65.536]]}
self.MICHALEWICZ_ = {'name':'MICHALEWICZ', 'f':MICHALEWICZ, 'bounds':[[0, np.pi], [0, np.pi]], 'opt':[[2.2, 1.57], -1.8013]}
self.BEALE_ = {'name':'BEALE', 'f':BEALE, 'bounds':[[-4.5, 4.5], [-4.5, 4.5]], 'opt':[[3, 0.5], 0]}
self.BRANIN_ = {'name':'BRANIN', 'f':BRANIN, 'bounds':[[-5, 10], [0, 15]], 'opt':[[-np.pi, 12.275], 0.397887]}
self.GOLDSTEIN_PRICE_ = {'name':'GOLDSTEIN_PRICE', 'f':GOLDSTEIN_PRICE, 'bounds':[[-2, 2], [-2, 2]], 'opt':[[0, -1], 3]}
self.PERM_D_BETA_ = {'name':'PERM_D_BETA', 'f':PERM_D_BETA, 'bounds':[[-2, 2], [-2, 2]], 'opt':[[1, 2], 0]}
self.dictionary = {'Ackley': self.Ackley_,
'sixth_Bukin':self.sixth_Bukin_,
'Cross_in_Tray':self.Cross_in_Tray_,
'Drop_Wave':self.Drop_Wave_,
'Eggholder':self.Eggholder_,
'Griewank':self.Griewank_,
'Holder_Table':self.Holder_Table_,
'Levy':self.Levy_,
'Rastrigin':self.Rastrigin_,
'second_Schaffe':self.second_Schaffe_,
'fourth_Schaffer':self.fourth_Schaffer_,
'Schwefel':self.Schwefel_,
'Shubert':self.Shubert_,
'Styblinski_Tang':self.Styblinski_Tang_,
'Easom':self.Easom_,
'Bohachevsky':self.Bohachevsky_,
'Perm_d_beta':self.Perm_d_beta_,
'Rotated_Hyper_Ellipsoid':self.Rotated_Hyper_Ellipsoid_,
'Sum_of_Different_Powers': self.Sum_of_Different_Powers_,
'SUM_SQUARES':self.SUM_SQUARES_,
'TRID':self.TRID_,
'BOOTH': self.BOOTH_,
'Matyas':self.Matyas_,
'MCCORMICK': self.MCCORMICK_,
'Power_Sum':self.Power_Sum_,
'Zakharov':self.Zakharov_,
'THREE_HUMP_CAMEL' :self.THREE_HUMP_CAMEL_,
'SIX_HUMP_CAMEL': self.SIX_HUMP_CAMEL_,
'DIXON_PRICE': self.DIXON_PRICE_,
'ROSENBROCK_': self.ROSENBROCK_,
'DE_JONG':self.DE_JONG_,
'MICHALEWICZ': self.MICHALEWICZ_,
'BEALE':self.BEALE_,
'BRANIN': self.BRANIN_,
'GOLDSTEIN_PRICE':self.GOLDSTEIN_PRICE_,
'PERM_D_BETA':self.PERM_D_BETA_}
self.whole_list = list(self.dictionary.keys())
def plotly_graph(problem, df=None):
function=problem['f']
x_lb=problem['bounds'][0][0]
x_ub=problem['bounds'][0][1]
y_lb=problem['bounds'][1][0]
y_ub=problem['bounds'][1][1]
x = np.linspace(x_lb, x_ub, 100)
y = np.linspace(y_lb, y_ub, 100)
z = np.empty((100, 100))
for ind_y, j in enumerate(y):
for ind_x, i in enumerate(x):
z[ind_y][ind_x] = function(np.array([i, j]))
steps_ = int(np.max(df['iter']))
fig1 = go.Figure(data=[go.Surface(x=x, y=y, z=z)])
for step in range(steps_):
points = df[df['iter']==step]
points_x = list(points['x1'])
points_y = list(points['x2'])
points_z = list(points['f'])
fig1.add_scatter3d(x=np.array(points_x), y=np.array(points_y), z=np.array(points_z), mode='markers', visible=False, marker=dict(size=5, color="white", line=dict(width=1, color="black")))
fig1.update_layout(title=f"f = {step}")
# Create figure
fig = go.Figure(data=[go.Scatter3d(x=[], y=[], z=[],
mode="markers",
marker=dict(size=5, color="white", line=dict(width=1, color="black"))
), fig1.data[0]]
)
# Frames
frames = [go.Frame(data=[go.Scatter3d(x=k['x'],
y=k['y'],
z=k['z']
), fig1.data[0]
],
traces= [0],
name=f'frame{ind}'
) for ind, k in enumerate(fig1.data[1:])
]
fig.update(frames=frames)
def frame_args(duration):
return {
"frame": {"duration": duration},
"mode": "immediate",
"fromcurrent": True,
"transition": {"duration": duration, "easing": "linear"},
}
sliders = [
{"pad": {"b": 10, "t": 60},
"len": 0.9,
"x": 0.1,
"y": 0,
"steps": [
{"args": [[f.name], frame_args(0)],
"label": str(k),
"method": "animate",
} for k, f in enumerate(fig.frames)
]
}
]
fig.update_layout(
updatemenus = [{"buttons":[
{
"args": [None, frame_args(150)],
"label": "Play",
"method": "animate",
},
{
"args": [[None], frame_args(150)],
"label": "Pause",
"method": "animate",
}],
"direction": "left",
"pad": {"r": 10, "t": 70},
"type": "buttons",
"x": 0.1,
"y": 0,
}
],
sliders=sliders
)
fig.update_layout(sliders=sliders)
fig.write_html('animation.html')
return fig
#problem=test_functions().PERM_D_BETA_
#df, best_var, best_sol = custom_pso(problem, 20, 2, maxiter=100, solver="Coulomb", k=0.00000000000000001, G=0.00000001, t=1.0, max_q=0.01, auto_reduce_search_space=True, dinamic=True)
#plotly_graph(problem, df)
#print(best_sol)
```
''')
st.markdown("### 4. Experimentación")
if "results" not in st.session_state:
st.session_state.results = {'df':[], 'fig':[], 'best_solution':None, 'best_f':None}
c1, c2 = st.columns(2)
options = test_functions().whole_list
selected = c1.selectbox("choose problem", options, index=1)
problem = test_functions().dictionary[selected]
solver_list = ['Random', 'Newton', 'Coulomb']
solver_selected = c2.selectbox("choose solver", options=solver_list, index=0)
st.markdown("Hyperparameters")
# hyperparameters
auto_constaint_choosen=False
G=0.0000000001
k=0.0000000001
t=1.0
options_as_mt=['Linear', 'Quadratic', 'Exponential']
assing_method='Linear'
if solver_selected == "Random":
auto_constaint = st.selectbox("auto_constraint_domain", options=['False', 'True'], index=1)
dic_auto_constaint = {'False':False, 'True':True}
auto_constaint_choosen=dic_auto_constaint[auto_constaint]
elif solver_selected == "Newton":
c1, c2, c3 = st.columns(3)
G=c1.number_input("G", min_value=0.0, max_value=8.0, value=0.0000000001)
assing_method = c2.selectbox("assing mehod", options=options_as_mt, index=0)
t=c3.number_input("t", min_value=0.01, max_value=10.0, value=1.0)
elif solver_selected == "Coulomb":
c1, c2, c3 = st.columns(3)
k=c1.number_input("k", min_value=0.0, max_value=8.0, value=0.0000000001)
assing_method = c2.selectbox("assing mehod", options=options_as_mt, index=0)
t=c3.number_input("t", min_value=0.01, max_value=10.0, value=1.0)
solve_bt = st.button("Solve")
if solve_bt:
df, best_solution, best_f = custom_pso(problem, nPart=20, nVar=2, maxiter=100, solver=solver_selected, auto_reduce_search_space=auto_constaint_choosen, G=G, t=t, keep_best=True, k=k, dinamic=True, weight_method=assing_method)
fig = plotly_graph(problem, df)
st.session_state.results['df'], st.session_state.results['best_solution'], st.session_state.results['best_f'], st.session_state.results['fig'] = df, best_solution, best_f, fig
if len(st.session_state.results['df'])>0:
results = st.session_state.results
df, best_solution, best_f = results['df'], results['best_solution'], results['best_f']
with st.expander('Performance'):
c1, c2 = st.columns([4, 1])
c1.dataframe(df)
c2.markdown('Best Solution:')
df = pd.DataFrame(best_solution)
df.columns = ['value']
c2.dataframe(df)
c2.markdown(f'Best Value: `{best_f}`')
fig = results['fig']
st.plotly_chart(fig)
|