Spaces:
Runtime error
Runtime error
Richard Neuschulz
commited on
Commit
·
f8eedcb
1
Parent(s):
b883378
added files
Browse files- attention_processor_faceid.py +427 -0
- utils.py +81 -0
attention_processor_faceid.py
ADDED
|
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
from diffusers.models.lora import LoRALinearLayer
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class LoRAAttnProcessor(nn.Module):
|
| 10 |
+
r"""
|
| 11 |
+
Default processor for performing attention-related computations.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
hidden_size=None,
|
| 17 |
+
cross_attention_dim=None,
|
| 18 |
+
rank=4,
|
| 19 |
+
network_alpha=None,
|
| 20 |
+
lora_scale=1.0,
|
| 21 |
+
):
|
| 22 |
+
super().__init__()
|
| 23 |
+
|
| 24 |
+
self.rank = rank
|
| 25 |
+
self.lora_scale = lora_scale
|
| 26 |
+
|
| 27 |
+
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
| 28 |
+
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
| 29 |
+
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
| 30 |
+
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
| 31 |
+
|
| 32 |
+
def __call__(
|
| 33 |
+
self,
|
| 34 |
+
attn,
|
| 35 |
+
hidden_states,
|
| 36 |
+
encoder_hidden_states=None,
|
| 37 |
+
attention_mask=None,
|
| 38 |
+
temb=None,
|
| 39 |
+
):
|
| 40 |
+
residual = hidden_states
|
| 41 |
+
|
| 42 |
+
if attn.spatial_norm is not None:
|
| 43 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 44 |
+
|
| 45 |
+
input_ndim = hidden_states.ndim
|
| 46 |
+
|
| 47 |
+
if input_ndim == 4:
|
| 48 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 49 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 50 |
+
|
| 51 |
+
batch_size, sequence_length, _ = (
|
| 52 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 53 |
+
)
|
| 54 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 55 |
+
|
| 56 |
+
if attn.group_norm is not None:
|
| 57 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 58 |
+
|
| 59 |
+
query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
|
| 60 |
+
|
| 61 |
+
if encoder_hidden_states is None:
|
| 62 |
+
encoder_hidden_states = hidden_states
|
| 63 |
+
elif attn.norm_cross:
|
| 64 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 65 |
+
|
| 66 |
+
key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
|
| 67 |
+
value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
|
| 68 |
+
|
| 69 |
+
query = attn.head_to_batch_dim(query)
|
| 70 |
+
key = attn.head_to_batch_dim(key)
|
| 71 |
+
value = attn.head_to_batch_dim(value)
|
| 72 |
+
|
| 73 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 74 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 75 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 76 |
+
|
| 77 |
+
# linear proj
|
| 78 |
+
hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
|
| 79 |
+
# dropout
|
| 80 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 81 |
+
|
| 82 |
+
if input_ndim == 4:
|
| 83 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 84 |
+
|
| 85 |
+
if attn.residual_connection:
|
| 86 |
+
hidden_states = hidden_states + residual
|
| 87 |
+
|
| 88 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 89 |
+
|
| 90 |
+
return hidden_states
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class LoRAIPAttnProcessor(nn.Module):
|
| 94 |
+
r"""
|
| 95 |
+
Attention processor for IP-Adapater.
|
| 96 |
+
Args:
|
| 97 |
+
hidden_size (`int`):
|
| 98 |
+
The hidden size of the attention layer.
|
| 99 |
+
cross_attention_dim (`int`):
|
| 100 |
+
The number of channels in the `encoder_hidden_states`.
|
| 101 |
+
scale (`float`, defaults to 1.0):
|
| 102 |
+
the weight scale of image prompt.
|
| 103 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
| 104 |
+
The context length of the image features.
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None, lora_scale=1.0, scale=1.0, num_tokens=4):
|
| 108 |
+
super().__init__()
|
| 109 |
+
|
| 110 |
+
self.rank = rank
|
| 111 |
+
self.lora_scale = lora_scale
|
| 112 |
+
|
| 113 |
+
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
| 114 |
+
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
| 115 |
+
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
| 116 |
+
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
| 117 |
+
|
| 118 |
+
self.hidden_size = hidden_size
|
| 119 |
+
self.cross_attention_dim = cross_attention_dim
|
| 120 |
+
self.scale = scale
|
| 121 |
+
self.num_tokens = num_tokens
|
| 122 |
+
|
| 123 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 124 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 125 |
+
|
| 126 |
+
def __call__(
|
| 127 |
+
self,
|
| 128 |
+
attn,
|
| 129 |
+
hidden_states,
|
| 130 |
+
encoder_hidden_states=None,
|
| 131 |
+
attention_mask=None,
|
| 132 |
+
temb=None,
|
| 133 |
+
):
|
| 134 |
+
residual = hidden_states
|
| 135 |
+
|
| 136 |
+
if attn.spatial_norm is not None:
|
| 137 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 138 |
+
|
| 139 |
+
input_ndim = hidden_states.ndim
|
| 140 |
+
|
| 141 |
+
if input_ndim == 4:
|
| 142 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 143 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 144 |
+
|
| 145 |
+
batch_size, sequence_length, _ = (
|
| 146 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 147 |
+
)
|
| 148 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 149 |
+
|
| 150 |
+
if attn.group_norm is not None:
|
| 151 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 152 |
+
|
| 153 |
+
query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
|
| 154 |
+
|
| 155 |
+
if encoder_hidden_states is None:
|
| 156 |
+
encoder_hidden_states = hidden_states
|
| 157 |
+
else:
|
| 158 |
+
# get encoder_hidden_states, ip_hidden_states
|
| 159 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 160 |
+
encoder_hidden_states, ip_hidden_states = (
|
| 161 |
+
encoder_hidden_states[:, :end_pos, :],
|
| 162 |
+
encoder_hidden_states[:, end_pos:, :],
|
| 163 |
+
)
|
| 164 |
+
if attn.norm_cross:
|
| 165 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 166 |
+
|
| 167 |
+
key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
|
| 168 |
+
value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
|
| 169 |
+
|
| 170 |
+
query = attn.head_to_batch_dim(query)
|
| 171 |
+
key = attn.head_to_batch_dim(key)
|
| 172 |
+
value = attn.head_to_batch_dim(value)
|
| 173 |
+
|
| 174 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 175 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 176 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 177 |
+
|
| 178 |
+
# for ip-adapter
|
| 179 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
| 180 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
| 181 |
+
|
| 182 |
+
ip_key = attn.head_to_batch_dim(ip_key)
|
| 183 |
+
ip_value = attn.head_to_batch_dim(ip_value)
|
| 184 |
+
|
| 185 |
+
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
| 186 |
+
self.attn_map = ip_attention_probs
|
| 187 |
+
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
| 188 |
+
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
| 189 |
+
|
| 190 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
| 191 |
+
|
| 192 |
+
# linear proj
|
| 193 |
+
hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
|
| 194 |
+
# dropout
|
| 195 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 196 |
+
|
| 197 |
+
if input_ndim == 4:
|
| 198 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 199 |
+
|
| 200 |
+
if attn.residual_connection:
|
| 201 |
+
hidden_states = hidden_states + residual
|
| 202 |
+
|
| 203 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 204 |
+
|
| 205 |
+
return hidden_states
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
class LoRAAttnProcessor2_0(nn.Module):
|
| 209 |
+
|
| 210 |
+
r"""
|
| 211 |
+
Default processor for performing attention-related computations.
|
| 212 |
+
"""
|
| 213 |
+
|
| 214 |
+
def __init__(
|
| 215 |
+
self,
|
| 216 |
+
hidden_size=None,
|
| 217 |
+
cross_attention_dim=None,
|
| 218 |
+
rank=4,
|
| 219 |
+
network_alpha=None,
|
| 220 |
+
lora_scale=1.0,
|
| 221 |
+
):
|
| 222 |
+
super().__init__()
|
| 223 |
+
|
| 224 |
+
self.rank = rank
|
| 225 |
+
self.lora_scale = lora_scale
|
| 226 |
+
|
| 227 |
+
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
| 228 |
+
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
| 229 |
+
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
| 230 |
+
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
| 231 |
+
|
| 232 |
+
def __call__(
|
| 233 |
+
self,
|
| 234 |
+
attn,
|
| 235 |
+
hidden_states,
|
| 236 |
+
encoder_hidden_states=None,
|
| 237 |
+
attention_mask=None,
|
| 238 |
+
temb=None,
|
| 239 |
+
):
|
| 240 |
+
residual = hidden_states
|
| 241 |
+
|
| 242 |
+
if attn.spatial_norm is not None:
|
| 243 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 244 |
+
|
| 245 |
+
input_ndim = hidden_states.ndim
|
| 246 |
+
|
| 247 |
+
if input_ndim == 4:
|
| 248 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 249 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 250 |
+
|
| 251 |
+
batch_size, sequence_length, _ = (
|
| 252 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 253 |
+
)
|
| 254 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 255 |
+
|
| 256 |
+
if attn.group_norm is not None:
|
| 257 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 258 |
+
|
| 259 |
+
query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
|
| 260 |
+
|
| 261 |
+
if encoder_hidden_states is None:
|
| 262 |
+
encoder_hidden_states = hidden_states
|
| 263 |
+
elif attn.norm_cross:
|
| 264 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 265 |
+
|
| 266 |
+
key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
|
| 267 |
+
value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
|
| 268 |
+
|
| 269 |
+
inner_dim = key.shape[-1]
|
| 270 |
+
head_dim = inner_dim // attn.heads
|
| 271 |
+
|
| 272 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 273 |
+
|
| 274 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 275 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 276 |
+
|
| 277 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 278 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 279 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 280 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 284 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 285 |
+
|
| 286 |
+
# linear proj
|
| 287 |
+
hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
|
| 288 |
+
# dropout
|
| 289 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 290 |
+
|
| 291 |
+
if input_ndim == 4:
|
| 292 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 293 |
+
|
| 294 |
+
if attn.residual_connection:
|
| 295 |
+
hidden_states = hidden_states + residual
|
| 296 |
+
|
| 297 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 298 |
+
|
| 299 |
+
return hidden_states
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
class LoRAIPAttnProcessor2_0(nn.Module):
|
| 303 |
+
r"""
|
| 304 |
+
Processor for implementing the LoRA attention mechanism.
|
| 305 |
+
|
| 306 |
+
Args:
|
| 307 |
+
hidden_size (`int`, *optional*):
|
| 308 |
+
The hidden size of the attention layer.
|
| 309 |
+
cross_attention_dim (`int`, *optional*):
|
| 310 |
+
The number of channels in the `encoder_hidden_states`.
|
| 311 |
+
rank (`int`, defaults to 4):
|
| 312 |
+
The dimension of the LoRA update matrices.
|
| 313 |
+
network_alpha (`int`, *optional*):
|
| 314 |
+
Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
|
| 315 |
+
"""
|
| 316 |
+
|
| 317 |
+
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None, lora_scale=1.0, scale=1.0, num_tokens=4):
|
| 318 |
+
super().__init__()
|
| 319 |
+
|
| 320 |
+
self.rank = rank
|
| 321 |
+
self.lora_scale = lora_scale
|
| 322 |
+
self.num_tokens = num_tokens
|
| 323 |
+
|
| 324 |
+
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
| 325 |
+
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
| 326 |
+
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
| 327 |
+
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
self.hidden_size = hidden_size
|
| 331 |
+
self.cross_attention_dim = cross_attention_dim
|
| 332 |
+
self.scale = scale
|
| 333 |
+
|
| 334 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 335 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 336 |
+
|
| 337 |
+
def __call__(
|
| 338 |
+
self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0, temb=None
|
| 339 |
+
):
|
| 340 |
+
residual = hidden_states
|
| 341 |
+
|
| 342 |
+
if attn.spatial_norm is not None:
|
| 343 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 344 |
+
|
| 345 |
+
input_ndim = hidden_states.ndim
|
| 346 |
+
|
| 347 |
+
if input_ndim == 4:
|
| 348 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 349 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 350 |
+
|
| 351 |
+
batch_size, sequence_length, _ = (
|
| 352 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 353 |
+
)
|
| 354 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 355 |
+
|
| 356 |
+
if attn.group_norm is not None:
|
| 357 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 358 |
+
|
| 359 |
+
query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
|
| 360 |
+
#query = attn.head_to_batch_dim(query)
|
| 361 |
+
|
| 362 |
+
if encoder_hidden_states is None:
|
| 363 |
+
encoder_hidden_states = hidden_states
|
| 364 |
+
else:
|
| 365 |
+
# get encoder_hidden_states, ip_hidden_states
|
| 366 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 367 |
+
encoder_hidden_states, ip_hidden_states = (
|
| 368 |
+
encoder_hidden_states[:, :end_pos, :],
|
| 369 |
+
encoder_hidden_states[:, end_pos:, :],
|
| 370 |
+
)
|
| 371 |
+
if attn.norm_cross:
|
| 372 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 373 |
+
|
| 374 |
+
# for text
|
| 375 |
+
key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
|
| 376 |
+
value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
|
| 377 |
+
|
| 378 |
+
inner_dim = key.shape[-1]
|
| 379 |
+
head_dim = inner_dim // attn.heads
|
| 380 |
+
|
| 381 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 382 |
+
|
| 383 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 384 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 385 |
+
|
| 386 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 387 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 388 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 389 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 393 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 394 |
+
|
| 395 |
+
# for ip
|
| 396 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
| 397 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
| 398 |
+
|
| 399 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 400 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 401 |
+
|
| 402 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 403 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 404 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
| 405 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 410 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
| 411 |
+
|
| 412 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
| 413 |
+
|
| 414 |
+
# linear proj
|
| 415 |
+
hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
|
| 416 |
+
# dropout
|
| 417 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 418 |
+
|
| 419 |
+
if input_ndim == 4:
|
| 420 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 421 |
+
|
| 422 |
+
if attn.residual_connection:
|
| 423 |
+
hidden_states = hidden_states + residual
|
| 424 |
+
|
| 425 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 426 |
+
|
| 427 |
+
return hidden_states
|
utils.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
attn_maps = {}
|
| 7 |
+
def hook_fn(name):
|
| 8 |
+
def forward_hook(module, input, output):
|
| 9 |
+
if hasattr(module.processor, "attn_map"):
|
| 10 |
+
attn_maps[name] = module.processor.attn_map
|
| 11 |
+
del module.processor.attn_map
|
| 12 |
+
|
| 13 |
+
return forward_hook
|
| 14 |
+
|
| 15 |
+
def register_cross_attention_hook(unet):
|
| 16 |
+
for name, module in unet.named_modules():
|
| 17 |
+
if name.split('.')[-1].startswith('attn2'):
|
| 18 |
+
module.register_forward_hook(hook_fn(name))
|
| 19 |
+
|
| 20 |
+
return unet
|
| 21 |
+
|
| 22 |
+
def upscale(attn_map, target_size):
|
| 23 |
+
attn_map = torch.mean(attn_map, dim=0)
|
| 24 |
+
attn_map = attn_map.permute(1,0)
|
| 25 |
+
temp_size = None
|
| 26 |
+
|
| 27 |
+
for i in range(0,5):
|
| 28 |
+
scale = 2 ** i
|
| 29 |
+
if ( target_size[0] // scale ) * ( target_size[1] // scale) == attn_map.shape[1]*64:
|
| 30 |
+
temp_size = (target_size[0]//(scale*8), target_size[1]//(scale*8))
|
| 31 |
+
break
|
| 32 |
+
|
| 33 |
+
assert temp_size is not None, "temp_size cannot is None"
|
| 34 |
+
|
| 35 |
+
attn_map = attn_map.view(attn_map.shape[0], *temp_size)
|
| 36 |
+
|
| 37 |
+
attn_map = F.interpolate(
|
| 38 |
+
attn_map.unsqueeze(0).to(dtype=torch.float32),
|
| 39 |
+
size=target_size,
|
| 40 |
+
mode='bilinear',
|
| 41 |
+
align_corners=False
|
| 42 |
+
)[0]
|
| 43 |
+
|
| 44 |
+
attn_map = torch.softmax(attn_map, dim=0)
|
| 45 |
+
return attn_map
|
| 46 |
+
def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):
|
| 47 |
+
|
| 48 |
+
idx = 0 if instance_or_negative else 1
|
| 49 |
+
net_attn_maps = []
|
| 50 |
+
|
| 51 |
+
for name, attn_map in attn_maps.items():
|
| 52 |
+
attn_map = attn_map.cpu() if detach else attn_map
|
| 53 |
+
attn_map = torch.chunk(attn_map, batch_size)[idx].squeeze()
|
| 54 |
+
attn_map = upscale(attn_map, image_size)
|
| 55 |
+
net_attn_maps.append(attn_map)
|
| 56 |
+
|
| 57 |
+
net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)
|
| 58 |
+
|
| 59 |
+
return net_attn_maps
|
| 60 |
+
|
| 61 |
+
def attnmaps2images(net_attn_maps):
|
| 62 |
+
|
| 63 |
+
#total_attn_scores = 0
|
| 64 |
+
images = []
|
| 65 |
+
|
| 66 |
+
for attn_map in net_attn_maps:
|
| 67 |
+
attn_map = attn_map.cpu().numpy()
|
| 68 |
+
#total_attn_scores += attn_map.mean().item()
|
| 69 |
+
|
| 70 |
+
normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
|
| 71 |
+
normalized_attn_map = normalized_attn_map.astype(np.uint8)
|
| 72 |
+
#print("norm: ", normalized_attn_map.shape)
|
| 73 |
+
image = Image.fromarray(normalized_attn_map)
|
| 74 |
+
|
| 75 |
+
#image = fix_save_attn_map(attn_map)
|
| 76 |
+
images.append(image)
|
| 77 |
+
|
| 78 |
+
#print(total_attn_scores)
|
| 79 |
+
return images
|
| 80 |
+
def is_torch2_available():
|
| 81 |
+
return hasattr(F, "scaled_dot_product_attention")
|