Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +540 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,542 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
"
|
28 |
-
"
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
from typing import Dict, List, Optional
|
5 |
+
import re
|
6 |
+
from urllib.parse import quote
|
7 |
+
import asyncio
|
8 |
+
import aiohttp
|
9 |
|
10 |
+
# Configure page
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="WikiBot - Multilingual Assistant",
|
13 |
+
page_icon="π",
|
14 |
+
layout="wide",
|
15 |
+
initial_sidebar_state="collapsed"
|
16 |
+
)
|
17 |
+
|
18 |
+
# Language codes mapping
|
19 |
+
LANGUAGES = {
|
20 |
+
"English": "en",
|
21 |
+
"Telugu": "te",
|
22 |
+
"Hindi": "hi",
|
23 |
+
"Spanish": "es",
|
24 |
+
"French": "fr",
|
25 |
+
"German": "de",
|
26 |
+
"Italian": "it",
|
27 |
+
"Portuguese": "pt",
|
28 |
+
"Russian": "ru",
|
29 |
+
"Japanese": "ja",
|
30 |
+
"Chinese": "zh",
|
31 |
+
"Arabic": "ar",
|
32 |
+
"Korean": "ko"
|
33 |
+
}
|
34 |
+
|
35 |
+
class OllamaLLM:
|
36 |
+
def __init__(self, base_url: str = "http://localhost:11434"):
|
37 |
+
self.base_url = base_url
|
38 |
+
self.api_url = f"{base_url}/api/generate"
|
39 |
+
self.models_url = f"{base_url}/api/tags"
|
40 |
+
|
41 |
+
def check_connection(self) -> bool:
|
42 |
+
"""Check if Ollama is running"""
|
43 |
+
try:
|
44 |
+
response = requests.get(self.models_url, timeout=5)
|
45 |
+
return response.status_code == 200
|
46 |
+
except:
|
47 |
+
return False
|
48 |
+
|
49 |
+
def get_available_models(self) -> List[str]:
|
50 |
+
"""Get list of available models"""
|
51 |
+
try:
|
52 |
+
response = requests.get(self.models_url, timeout=10)
|
53 |
+
if response.status_code == 200:
|
54 |
+
data = response.json()
|
55 |
+
return [model["name"] for model in data.get("models", [])]
|
56 |
+
return []
|
57 |
+
except:
|
58 |
+
return []
|
59 |
+
|
60 |
+
def generate_summary(self, text: str, model: str = "llama3.2", language: str = "English",
|
61 |
+
summary_type: str = "concise") -> str:
|
62 |
+
"""Generate AI summary using local LLM"""
|
63 |
+
try:
|
64 |
+
# Craft prompt based on language and summary type
|
65 |
+
if summary_type == "concise":
|
66 |
+
prompt = f"""Summarize the following Wikipedia content in {language} in 2-3 sentences.
|
67 |
+
Make it clear and informative:
|
68 |
+
|
69 |
+
{text}
|
70 |
+
|
71 |
+
Summary:"""
|
72 |
+
elif summary_type == "detailed":
|
73 |
+
prompt = f"""Provide a comprehensive summary of the following Wikipedia content in {language}.
|
74 |
+
Include key points, important facts, and context:
|
75 |
+
|
76 |
+
{text}
|
77 |
+
|
78 |
+
Detailed Summary:"""
|
79 |
+
else: # explanatory
|
80 |
+
prompt = f"""Explain the following Wikipedia content in {language} in a simple,
|
81 |
+
easy-to-understand way as if explaining to someone unfamiliar with the topic:
|
82 |
+
|
83 |
+
{text}
|
84 |
+
|
85 |
+
Explanation:"""
|
86 |
+
|
87 |
+
# Request to Ollama
|
88 |
+
payload = {
|
89 |
+
"model": model,
|
90 |
+
"prompt": prompt,
|
91 |
+
"stream": False,
|
92 |
+
"options": {
|
93 |
+
"temperature": 0.7,
|
94 |
+
"num_predict": 500 if summary_type == "detailed" else 200
|
95 |
+
}
|
96 |
+
}
|
97 |
+
|
98 |
+
response = requests.post(self.api_url, json=payload, timeout=30)
|
99 |
+
|
100 |
+
if response.status_code == 200:
|
101 |
+
data = response.json()
|
102 |
+
return data.get("response", "").strip()
|
103 |
+
else:
|
104 |
+
return f"Error: {response.status_code}"
|
105 |
+
|
106 |
+
except Exception as e:
|
107 |
+
return f"LLM Error: {str(e)}"
|
108 |
+
|
109 |
+
def translate_text(self, text: str, target_language: str, model: str = "llama3.2") -> str:
|
110 |
+
"""Translate text using local LLM"""
|
111 |
+
try:
|
112 |
+
prompt = f"""Translate the following text to {target_language}.
|
113 |
+
Provide only the translation, no additional text:
|
114 |
+
|
115 |
+
{text}
|
116 |
+
|
117 |
+
Translation:"""
|
118 |
+
|
119 |
+
payload = {
|
120 |
+
"model": model,
|
121 |
+
"prompt": prompt,
|
122 |
+
"stream": False,
|
123 |
+
"options": {
|
124 |
+
"temperature": 0.3,
|
125 |
+
"num_predict": 300
|
126 |
+
}
|
127 |
+
}
|
128 |
+
|
129 |
+
response = requests.post(self.api_url, json=payload, timeout=20)
|
130 |
+
|
131 |
+
if response.status_code == 200:
|
132 |
+
data = response.json()
|
133 |
+
return data.get("response", "").strip()
|
134 |
+
else:
|
135 |
+
return text # Return original if translation fails
|
136 |
+
|
137 |
+
except Exception as e:
|
138 |
+
return text
|
139 |
+
|
140 |
+
class WikipediaAPI:
|
141 |
+
def __init__(self):
|
142 |
+
self.base_url = "https://{}.wikipedia.org/api/rest_v1"
|
143 |
+
self.search_url = "https://{}.wikipedia.org/w/api.php"
|
144 |
+
|
145 |
+
def search_articles(self, query: str, lang: str = "en", limit: int = 5) -> List[Dict]:
|
146 |
+
"""Search for Wikipedia articles"""
|
147 |
+
try:
|
148 |
+
params = {
|
149 |
+
"action": "query",
|
150 |
+
"format": "json",
|
151 |
+
"list": "search",
|
152 |
+
"srsearch": query,
|
153 |
+
"srlimit": limit,
|
154 |
+
"srprop": "snippet|titlesnippet"
|
155 |
+
}
|
156 |
+
|
157 |
+
url = self.search_url.format(lang)
|
158 |
+
response = requests.get(url, params=params, timeout=10)
|
159 |
+
response.raise_for_status()
|
160 |
+
|
161 |
+
data = response.json()
|
162 |
+
return data.get("query", {}).get("search", [])
|
163 |
+
except Exception as e:
|
164 |
+
st.error(f"Search error: {str(e)}")
|
165 |
+
return []
|
166 |
+
|
167 |
+
def get_page_summary(self, title: str, lang: str = "en") -> Optional[Dict]:
|
168 |
+
"""Get page summary using REST API"""
|
169 |
+
try:
|
170 |
+
encoded_title = quote(title.replace(" ", "_"))
|
171 |
+
url = f"{self.base_url.format(lang)}/page/summary/{encoded_title}"
|
172 |
+
|
173 |
+
response = requests.get(url, timeout=10)
|
174 |
+
response.raise_for_status()
|
175 |
+
|
176 |
+
return response.json()
|
177 |
+
except Exception as e:
|
178 |
+
st.error(f"Summary error: {str(e)}")
|
179 |
+
return None
|
180 |
+
|
181 |
+
def get_page_content(self, title: str, lang: str = "en", char_limit: int = 3000) -> Optional[str]:
|
182 |
+
"""Get page content sections"""
|
183 |
+
try:
|
184 |
+
params = {
|
185 |
+
"action": "query",
|
186 |
+
"format": "json",
|
187 |
+
"prop": "extracts",
|
188 |
+
"exintro": False,
|
189 |
+
"explaintext": True,
|
190 |
+
"exsectionformat": "plain",
|
191 |
+
"titles": title,
|
192 |
+
"exchars": char_limit
|
193 |
+
}
|
194 |
+
|
195 |
+
url = self.search_url.format(lang)
|
196 |
+
response = requests.get(url, params=params, timeout=10)
|
197 |
+
response.raise_for_status()
|
198 |
+
|
199 |
+
data = response.json()
|
200 |
+
pages = data.get("query", {}).get("pages", {})
|
201 |
+
|
202 |
+
for page_id, page_data in pages.items():
|
203 |
+
if "extract" in page_data:
|
204 |
+
return page_data["extract"]
|
205 |
+
|
206 |
+
return None
|
207 |
+
except Exception as e:
|
208 |
+
st.error(f"Content error: {str(e)}")
|
209 |
+
return None
|
210 |
+
|
211 |
+
def clean_html(text: str) -> str:
|
212 |
+
"""Remove HTML tags from text"""
|
213 |
+
clean = re.compile('<.*?>')
|
214 |
+
return re.sub(clean, '', text)
|
215 |
+
|
216 |
+
def simple_summarize(text: str, max_sentences: int = 3) -> str:
|
217 |
+
"""Fallback simple text summarization"""
|
218 |
+
sentences = text.split('. ')
|
219 |
+
summary_sentences = sentences[:max_sentences]
|
220 |
+
return '. '.join(summary_sentences) + ('.' if not summary_sentences[-1].endswith('.') else '')
|
221 |
+
|
222 |
+
def main():
|
223 |
+
# Custom CSS for mobile-first design
|
224 |
+
st.markdown("""
|
225 |
+
<style>
|
226 |
+
.main-header {
|
227 |
+
text-align: center;
|
228 |
+
color: #1f77b4;
|
229 |
+
margin-bottom: 2rem;
|
230 |
+
}
|
231 |
+
.search-container {
|
232 |
+
background-color: #f8f9fa;
|
233 |
+
padding: 1rem;
|
234 |
+
border-radius: 10px;
|
235 |
+
margin-bottom: 1rem;
|
236 |
+
}
|
237 |
+
.result-card {
|
238 |
+
background-color: white;
|
239 |
+
padding: 1rem;
|
240 |
+
border-radius: 8px;
|
241 |
+
border: 1px solid #dee2e6;
|
242 |
+
margin-bottom: 1rem;
|
243 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
244 |
+
}
|
245 |
+
.article-title {
|
246 |
+
color: #007bff;
|
247 |
+
font-weight: bold;
|
248 |
+
margin-bottom: 0.5rem;
|
249 |
+
}
|
250 |
+
.llm-status {
|
251 |
+
padding: 0.5rem;
|
252 |
+
border-radius: 5px;
|
253 |
+
margin-bottom: 1rem;
|
254 |
+
font-size: 0.9rem;
|
255 |
+
}
|
256 |
+
.status-connected {
|
257 |
+
background-color: #d4edda;
|
258 |
+
color: #155724;
|
259 |
+
border: 1px solid #c3e6cb;
|
260 |
+
}
|
261 |
+
.status-disconnected {
|
262 |
+
background-color: #f8d7da;
|
263 |
+
color: #721c24;
|
264 |
+
border: 1px solid #f5c6cb;
|
265 |
+
}
|
266 |
+
.ai-summary {
|
267 |
+
background-color: #f0f8ff;
|
268 |
+
padding: 1rem;
|
269 |
+
border-radius: 8px;
|
270 |
+
border-left: 4px solid #007bff;
|
271 |
+
margin: 1rem 0;
|
272 |
+
}
|
273 |
+
@media (max-width: 768px) {
|
274 |
+
.stSelectbox, .stTextInput {
|
275 |
+
font-size: 16px;
|
276 |
+
}
|
277 |
+
}
|
278 |
+
</style>
|
279 |
+
""", unsafe_allow_html=True)
|
280 |
+
|
281 |
+
# Header
|
282 |
+
st.markdown("<h1 class='main-header'>π€ WikiBot - AI-Powered Multilingual Assistant</h1>", unsafe_allow_html=True)
|
283 |
+
st.markdown("<p style='text-align: center; color: #666;'>Search Wikipedia with Local LLM Intelligence</p>", unsafe_allow_html=True)
|
284 |
+
|
285 |
+
# Initialize APIs
|
286 |
+
wiki_api = WikipediaAPI()
|
287 |
+
llm = OllamaLLM()
|
288 |
+
|
289 |
+
# Check LLM connection
|
290 |
+
llm_connected = llm.check_connection()
|
291 |
+
available_models = llm.get_available_models() if llm_connected else []
|
292 |
+
|
293 |
+
# LLM Status
|
294 |
+
if llm_connected:
|
295 |
+
st.markdown(f"""
|
296 |
+
<div class='llm-status status-connected'>
|
297 |
+
β
<strong>Local LLM Connected</strong> - Ollama running with {len(available_models)} models
|
298 |
+
</div>
|
299 |
+
""", unsafe_allow_html=True)
|
300 |
+
else:
|
301 |
+
st.markdown("""
|
302 |
+
<div class='llm-status status-disconnected'>
|
303 |
+
β <strong>Local LLM Disconnected</strong> - Install and run Ollama for AI features
|
304 |
+
</div>
|
305 |
+
""", unsafe_allow_html=True)
|
306 |
+
st.info("To enable AI features: Install Ollama from https://ollama.ai and run `ollama serve`")
|
307 |
+
|
308 |
+
# Search interface
|
309 |
+
st.markdown("<div class='search-container'>", unsafe_allow_html=True)
|
310 |
+
|
311 |
+
col1, col2 = st.columns([3, 1])
|
312 |
+
|
313 |
+
with col1:
|
314 |
+
query = st.text_input(
|
315 |
+
"π Search Wikipedia",
|
316 |
+
placeholder="e.g., 'Explain Kargil War in Telugu'",
|
317 |
+
help="Enter your search query in any language"
|
318 |
+
)
|
319 |
+
|
320 |
+
with col2:
|
321 |
+
selected_lang = st.selectbox(
|
322 |
+
"π Language",
|
323 |
+
options=list(LANGUAGES.keys()),
|
324 |
+
index=0
|
325 |
+
)
|
326 |
+
|
327 |
+
# Advanced options
|
328 |
+
with st.expander("βοΈ Advanced Options"):
|
329 |
+
col1, col2, col3 = st.columns(3)
|
330 |
+
|
331 |
+
with col1:
|
332 |
+
num_results = st.slider("Number of results", 1, 10, 3)
|
333 |
+
|
334 |
+
with col2:
|
335 |
+
if llm_connected:
|
336 |
+
summary_mode = st.selectbox(
|
337 |
+
"AI Summary Type",
|
338 |
+
["concise", "detailed", "explanatory"],
|
339 |
+
index=0
|
340 |
+
)
|
341 |
+
else:
|
342 |
+
summary_mode = st.selectbox(
|
343 |
+
"Summary Type",
|
344 |
+
["short", "medium", "long"],
|
345 |
+
index=1
|
346 |
+
)
|
347 |
+
|
348 |
+
with col3:
|
349 |
+
if llm_connected and available_models:
|
350 |
+
selected_model = st.selectbox(
|
351 |
+
"LLM Model",
|
352 |
+
options=available_models,
|
353 |
+
index=0
|
354 |
+
)
|
355 |
+
else:
|
356 |
+
st.info("No models available")
|
357 |
+
selected_model = None
|
358 |
+
|
359 |
+
# Translation options
|
360 |
+
if llm_connected:
|
361 |
+
col1, col2 = st.columns(2)
|
362 |
+
with col1:
|
363 |
+
enable_translation = st.checkbox("π Enable Translation", value=False)
|
364 |
+
with col2:
|
365 |
+
if enable_translation:
|
366 |
+
target_lang = st.selectbox(
|
367 |
+
"Translate to",
|
368 |
+
options=list(LANGUAGES.keys()),
|
369 |
+
index=1
|
370 |
+
)
|
371 |
+
|
372 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
373 |
+
|
374 |
+
# Search button
|
375 |
+
if st.button("π Search with AI", type="primary", use_container_width=True):
|
376 |
+
if query:
|
377 |
+
lang_code = LANGUAGES[selected_lang]
|
378 |
+
|
379 |
+
with st.spinner(f"Searching Wikipedia and processing with AI..."):
|
380 |
+
# Search for articles
|
381 |
+
search_results = wiki_api.search_articles(query, lang_code, num_results)
|
382 |
+
|
383 |
+
if search_results:
|
384 |
+
st.success(f"Found {len(search_results)} results - Processing with {'AI' if llm_connected else 'basic'} summarization")
|
385 |
+
|
386 |
+
for idx, result in enumerate(search_results):
|
387 |
+
with st.container():
|
388 |
+
st.markdown("<div class='result-card'>", unsafe_allow_html=True)
|
389 |
+
|
390 |
+
# Article title
|
391 |
+
title = result.get("title", "")
|
392 |
+
st.markdown(f"<div class='article-title'>{idx+1}. {title}</div>", unsafe_allow_html=True)
|
393 |
+
|
394 |
+
# Get detailed content for AI processing
|
395 |
+
content = wiki_api.get_page_content(title, lang_code)
|
396 |
+
summary_data = wiki_api.get_page_summary(title, lang_code)
|
397 |
+
|
398 |
+
if content and llm_connected and selected_model:
|
399 |
+
# AI-powered summary
|
400 |
+
with st.spinner("Generating AI summary..."):
|
401 |
+
ai_summary = llm.generate_summary(
|
402 |
+
content,
|
403 |
+
selected_model,
|
404 |
+
selected_lang,
|
405 |
+
summary_mode
|
406 |
+
)
|
407 |
+
|
408 |
+
if ai_summary and not ai_summary.startswith("Error") and not ai_summary.startswith("LLM Error"):
|
409 |
+
st.markdown("<div class='ai-summary'>", unsafe_allow_html=True)
|
410 |
+
st.markdown("**π€ AI Summary:**")
|
411 |
+
st.write(ai_summary)
|
412 |
+
|
413 |
+
# Translation if enabled
|
414 |
+
if 'enable_translation' in locals() and enable_translation and target_lang != selected_lang:
|
415 |
+
with st.spinner(f"Translating to {target_lang}..."):
|
416 |
+
translated = llm.translate_text(ai_summary, target_lang, selected_model)
|
417 |
+
if translated != ai_summary:
|
418 |
+
st.markdown(f"**π Translation to {target_lang}:**")
|
419 |
+
st.write(translated)
|
420 |
+
|
421 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
422 |
+
else:
|
423 |
+
# Fallback to simple summary
|
424 |
+
st.warning("AI summary failed, using fallback")
|
425 |
+
fallback_summary = simple_summarize(content, 3)
|
426 |
+
st.write(fallback_summary)
|
427 |
+
|
428 |
+
elif summary_data:
|
429 |
+
# Standard Wikipedia summary
|
430 |
+
summary_text = summary_data.get("extract", "")
|
431 |
+
if not llm_connected:
|
432 |
+
if summary_mode == "short":
|
433 |
+
summary_text = simple_summarize(summary_text, 2)
|
434 |
+
elif summary_mode == "medium":
|
435 |
+
summary_text = simple_summarize(summary_text, 4)
|
436 |
+
|
437 |
+
st.write(summary_text)
|
438 |
+
|
439 |
+
else:
|
440 |
+
# Fallback to search snippet
|
441 |
+
snippet = clean_html(result.get("snippet", ""))
|
442 |
+
st.write(snippet)
|
443 |
+
|
444 |
+
# Display thumbnail if available
|
445 |
+
if summary_data and "thumbnail" in summary_data:
|
446 |
+
st.image(summary_data["thumbnail"]["source"], width=150)
|
447 |
+
|
448 |
+
# Wikipedia link
|
449 |
+
if summary_data and "content_urls" in summary_data:
|
450 |
+
wiki_url = summary_data["content_urls"]["desktop"]["page"]
|
451 |
+
st.markdown(f"[π Read full article on Wikipedia]({wiki_url})")
|
452 |
+
|
453 |
+
# Detailed content button
|
454 |
+
if st.button(f"π Show detailed content", key=f"detail_{idx}"):
|
455 |
+
if content:
|
456 |
+
st.text_area(
|
457 |
+
"Full Content",
|
458 |
+
content,
|
459 |
+
height=300,
|
460 |
+
key=f"content_{idx}"
|
461 |
+
)
|
462 |
+
else:
|
463 |
+
st.warning("Detailed content not available")
|
464 |
+
|
465 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
466 |
+
st.markdown("---")
|
467 |
+
|
468 |
+
else:
|
469 |
+
st.warning(f"No results found for '{query}' in {selected_lang}")
|
470 |
+
st.info("Try different keywords or switch to another language")
|
471 |
+
|
472 |
+
else:
|
473 |
+
st.warning("Please enter a search query")
|
474 |
+
|
475 |
+
# Status dashboard
|
476 |
+
st.markdown("---")
|
477 |
+
col1, col2, col3, col4 = st.columns(4)
|
478 |
+
|
479 |
+
with col1:
|
480 |
+
st.metric("π Languages", len(LANGUAGES))
|
481 |
+
|
482 |
+
with col2:
|
483 |
+
st.metric("π€ LLM Status", "Connected" if llm_connected else "Offline")
|
484 |
+
|
485 |
+
with col3:
|
486 |
+
st.metric("π Models", len(available_models))
|
487 |
+
|
488 |
+
with col4:
|
489 |
+
st.metric("π Search Mode", "AI-Powered" if llm_connected else "Standard")
|
490 |
+
|
491 |
+
# Setup instructions
|
492 |
+
with st.expander("π οΈ Setup Instructions"):
|
493 |
+
st.markdown("""
|
494 |
+
### Install Ollama for AI Features:
|
495 |
+
|
496 |
+
1. **Install Ollama:**
|
497 |
+
```bash
|
498 |
+
# MacOS/Linux
|
499 |
+
curl -fsSL https://ollama.ai/install.sh | sh
|
500 |
+
|
501 |
+
# Windows - Download from https://ollama.ai
|
502 |
+
```
|
503 |
+
|
504 |
+
2. **Pull a model:**
|
505 |
+
```bash
|
506 |
+
ollama pull llama3.2
|
507 |
+
# or
|
508 |
+
ollama pull mistral
|
509 |
+
ollama pull codellama
|
510 |
+
```
|
511 |
+
|
512 |
+
3. **Start Ollama server:**
|
513 |
+
```bash
|
514 |
+
ollama serve
|
515 |
+
```
|
516 |
+
|
517 |
+
4. **Restart this app** - LLM features will be automatically enabled!
|
518 |
+
|
519 |
+
### Recommended Models:
|
520 |
+
- **llama3.2** - Great for general summarization
|
521 |
+
- **mistral** - Fast and efficient
|
522 |
+
- **codellama** - Good for technical content
|
523 |
+
""")
|
524 |
+
|
525 |
+
# Usage examples
|
526 |
+
with st.expander("π‘ Usage Examples"):
|
527 |
+
st.markdown("""
|
528 |
+
**Try these example queries:**
|
529 |
+
- "Explain Kargil War in Telugu" β AI generates Telugu explanation
|
530 |
+
- "Machine Learning" β Detailed AI summary with translation
|
531 |
+
- "Climate Change" β AI explanatory summary
|
532 |
+
- "Quantum Computing" β Technical AI analysis
|
533 |
+
|
534 |
+
**AI Features:**
|
535 |
+
- π€ Intelligent summarization (concise/detailed/explanatory)
|
536 |
+
- π Multi-language translation
|
537 |
+
- π Context-aware explanations
|
538 |
+
- π Enhanced content understanding
|
539 |
+
""")
|
540 |
+
|
541 |
+
if __name__ == "__main__":
|
542 |
+
main()
|