chatbot4nct / helpers.py
quoc-khanh's picture
Update helpers.py
b6aee82 verified
from docx import Document
import json
import datetime
import tempfile
from pathlib import Path
from unidecode import unidecode
from langchain_community.document_loaders import JSONLoader, UnstructuredWordDocumentLoader, WebBaseLoader, AsyncHtmlLoader
from langchain_community.document_transformers import Html2TextTransformer
from langchain_text_splitters import RecursiveCharacterTextSplitter, RecursiveJsonSplitter
from langchain_community.vectorstores import FAISS
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
import google.generativeai as genai
from tqdm import tqdm
from pathlib import Path
import shutil
import requests
from bs4 import BeautifulSoup
import os
from langchain_docling import DoclingLoader#, ExportType
from langchain_docling.loader import ExportType
import logging
# logging.getLogger("langchain").setLevel(logging.ERROR)
logging.getLogger().setLevel(logging.ERROR)
# from file_loader import get_vectorstore
key = os.environ["GOOGLE_API_KEY"]
# import asyncio
# from urllib.parse import urljoin
# from playwright.async_api import async_playwright
# from langchain_community.document_loaders import AsyncHtmlLoader
# from langchain_community.document_transformers import Html2TextTransformer
# from tqdm.asyncio import tqdm
# async def _fetch_urls(base_url):
# """Extract all links from a JavaScript-rendered webpage."""
# async with async_playwright() as p:
# try:
# browser = await p.chromium.launch(headless=True)
# page = await browser.new_page()
# await page.goto(base_url)
# await page.wait_for_load_state("networkidle")
# urls = set()
# links = await page.locator("a").all()
# for link in links:
# href = await link.get_attribute("href")
# if href and "#" not in href:
# full_url = urljoin(base_url, href)
# if full_url.startswith(base_url):
# urls.add(full_url)
# await browser.close()
# except Exception as e:
# print(f"⚠️ Không thể truy cập {base_url}: {e}")
# return [] # Trả về danh sách rỗng nếu gặp lỗi
# return list(urls)
# async def _fetch_web_content(urls):
# """Fetch HTML content and convert it to text, with a progress bar."""
# docs = []
# progress_bar = tqdm(total=len(urls), desc="Scraping Pages", unit="page")
# for page_url in urls:
# try:
# loader = AsyncHtmlLoader(page_url)
# html2text = Html2TextTransformer()
# html = await loader.aload()
# doc = html2text.transform_documents(html)
# docs.extend(doc)
# except Exception as e:
# print(f"Error loading {page_url}: {e}")
# progress_bar.update(1) # Update progress bar
# progress_bar.close()
# return docs
# def scrape_website(base_urls):
# """
# Scrapes a list of base URLs and extracts their content.
# Includes a progress bar for tracking.
# """
# async def _main():
# all_urls = []
# for base_url in base_urls:
# urls = await _fetch_urls(base_url)
# all_urls.extend(urls)
# docs = await _fetch_web_content(all_urls)
# return docs
# return asyncio.run(_main)
# class ChunkerWrapper:
# def __init__(self, splitter):
# self.splitter = splitter
# def chunk(self, text):
# # Use the 'split_text' method of the splitter to divide the text
# return self.splitter.split_text(text)
# def get_web_documents(base_urls=['https://nct.neu.edu.vn/']):
# """Tải nội dung từ danh sách URL với thanh tiến trình"""
# docs = []
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=100)
# chunker = ChunkerWrapper(text_splitter)
# for page_url in tqdm(base_urls, desc="Đang tải trang", unit="url"):
# try:
# # loader = WebBaseLoader(page_url)
# loader = DoclingLoader(file_path=page_url,chunker=chunker # This will break your doc into manageable pieces.
# )
# html = loader.load()
# doc = html
# docs.extend(doc)
# except Exception as e:
# print(f"Lỗi khi tải {page_url}: {e}")
# print(f"Tải thành công {len(docs)} trang.")
# return docs
# def load_text_data(file_path):
# """Tải nội dung văn bản từ file DOCX (đã loại bảng)."""
# # cleaned_file = Document(file_path) #remove_tables_from_docx(file_path)
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=100)
# chunker = ChunkerWrapper(text_splitter)
# return DoclingLoader(file_path=file_path, chunker=chunker # This will break your doc into manageable pieces.
# ).load()
def get_web_documents(base_urls=['https://nct.neu.edu.vn/']):
"""Fetch content from a list of URLs with a progress bar."""
docs = []
for page_url in tqdm(base_urls, desc="Loading page", unit="url"):
try:
loader = DoclingLoader(
file_path=page_url,
export_type=ExportType.DOC_CHUNKS # Enable internal chunking
)
doc = loader.load()
docs.extend(doc)
except Exception as e:
print(f"Error loading {page_url}: {e}")
print(f"Successfully loaded {len(docs)} documents.")
return docs
def load_text_data(file_path):
"""Load text content from a DOCX file (tables removed)."""
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=100)
loader = DoclingLoader(
file_path=file_path,
export_type=ExportType.MARKDOWN, # Enable internal chunking,
chunker = text_splitter
)
return loader.load()
def log_message(messages, filename="chat_log.txt"):
"""Ghi lịch sử tin nhắn vào file log"""
with open(filename, "a", encoding="utf-8") as f:
log_entry = {
"timestamp": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"conversation": messages
}
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
def remove_tables_from_docx(file_path):
"""Tạo bản sao của file DOCX nhưng loại bỏ tất cả bảng bên trong."""
doc = Document(file_path)
new_doc = Document()
for para in doc.paragraphs:
new_doc.add_paragraph(para.text)
# 📌 Lưu vào file tạm, đảm bảo đóng đúng cách
with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as temp_file:
temp_path = temp_file.name
new_doc.save(temp_path)
return temp_path # ✅ Trả về đường dẫn file mới, không làm hỏng file gốc
def extract_tables_from_docx(file_path):
doc = Document(file_path)
tables = []
all_paragraphs = [p.text.strip() for p in doc.paragraphs if p.text.strip()] # Lấy tất cả đoạn văn bản không rỗng
table_index = 0
para_index = 0
table_positions = []
# Xác định vị trí của bảng trong tài liệu
for element in doc.element.body:
if element.tag.endswith("tbl"):
table_positions.append((table_index, para_index))
table_index += 1
elif element.tag.endswith("p"):
para_index += 1
for idx, (table_idx, para_idx) in enumerate(table_positions):
data = []
for row in doc.tables[table_idx].rows:
data.append([cell.text.strip() for cell in row.cells])
if len(data) > 1: # Chỉ lấy bảng có dữ liệu
# Lấy 5 dòng trước và sau bảng
related_start = max(0, para_idx - 5)
related_end = min(len(all_paragraphs), para_idx + 5)
related_text = all_paragraphs[related_start:related_end]
tables.append({"table": idx + 1, "content": data, "related": related_text})
return tables
def convert_to_json(tables):
structured_data = {}
for table in tables:
headers = [unidecode(h) for h in table["content"][0]] # Bỏ dấu ở headers
rows = [[unidecode(cell) for cell in row] for row in table["content"][1:]] # Bỏ dấu ở dữ liệu
json_table = [dict(zip(headers, row)) for row in rows if len(row) == len(headers)]
related_text = [unidecode(text) for text in table["related"]] # Bỏ dấu ở văn bản liên quan
structured_data[table["table"]] = {
"content": json_table,
"related": related_text
}
return json.dumps(structured_data, indent=4, ensure_ascii=False)
def save_json_to_file(json_data, output_path):
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(json.loads(json_data), f, ensure_ascii=False, indent=4)
# def load_json_with_langchain(json_path):
# loader = JSONLoader(file_path=json_path, jq_schema='.. | .content?', text_content=False)
# data = loader.load()
# # # Kiểm tra xem dữ liệu có bị lỗi không
# # print("Sample Data:", data[:2]) # In thử 2 dòng đầu
# return data
def load_json_manually(json_path):
with open(json_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def load_table_data(file_path, output_json_path):
tables = extract_tables_from_docx(file_path)
json_output = convert_to_json(tables)
save_json_to_file(json_output, output_json_path)
table_data = load_json_manually(output_json_path)
return table_data
def get_splits(file_path, output_json_path):
# table_data = load_table_data(file_path, output_json_path)
text_data = load_text_data(file_path)
# Chia nhỏ văn bản
# json_splitter = RecursiveJsonSplitter(max_chunk_size = 1000)
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=250)
# table_splits = json_splitter.create_documents(texts=[table_data])
# text_splits = text_splitter.split_documents(text_data)
# all_splits = table_splits + text_splits DoclingLoader
return text_data #text_splits
def get_json_splits_only(file_path):
table_data = load_json_manually(file_path)
def remove_accents(obj): #xoa dau tieng viet
if isinstance(obj, str):
return unidecode(obj)
elif isinstance(obj, list):
return [remove_accents(item) for item in obj]
elif isinstance(obj, dict):
return {remove_accents(k): remove_accents(v) for k, v in obj.items()}
return obj
cleaned_data = remove_accents(table_data)
wrapped_data = {"data": cleaned_data} if isinstance(cleaned_data, list) else cleaned_data
json_splitter = RecursiveJsonSplitter(max_chunk_size = 2000)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=100)
table_splits = json_splitter.create_documents(texts=[wrapped_data])
table_splits = text_splitter.split_documents(table_splits)
return table_splits
def list_docx_files(folder_path):
return [str(file) for file in Path(folder_path).rglob("*.docx")]
def prompt_order(queries):
text = 'IMPORTANT: Here is the questions of user in order, use that and the context above to know the best answer:\n'
i = 0
for q in queries:
i += 1
text += f'Question {i}: {str(q)}\n'
return text