Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import torch | |
| import spaces | |
| import matplotlib | |
| import numpy as np | |
| import gradio as gr | |
| from PIL import Image | |
| from transformers import pipeline | |
| from huggingface_hub import hf_hub_download | |
| from gradio_imageslider import ImageSlider | |
| from depth_anything_v2.dpt import DepthAnythingV2 | |
| from loguru import logger | |
| css = """ | |
| #img-display-container { | |
| max-height: 100vh; | |
| } | |
| #img-display-input { | |
| max-height: 80vh; | |
| } | |
| #img-display-output { | |
| max-height: 80vh; | |
| } | |
| #download { | |
| height: 62px; | |
| } | |
| """ | |
| title = "# Depth Anything: Watch V1 and V2 side by side." | |
| description1 = """Please refer to **Depth Anything V2** [paper](https://arxiv.org/abs/2406.09414) for more details.""" | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| DEFAULT_V2_MODEL_NAME = "Base" | |
| DEFAULT_V1_MODEL_NAME = "Base" | |
| cmap = matplotlib.colormaps.get_cmap('Spectral_r') | |
| # -------------------------------------------------------------------- | |
| # Depth anything V1 configuration | |
| # -------------------------------------------------------------------- | |
| depth_anything_v1_name2checkpoint = { | |
| "Small": "LiheYoung/depth-anything-small-hf", | |
| "Base": "LiheYoung/depth-anything-base-hf", | |
| "Large": "LiheYoung/depth-anything-large-hf", | |
| } | |
| depth_anything_v1_pipelines = {} | |
| # -------------------------------------------------------------------- | |
| # Depth anything V2 configuration | |
| # -------------------------------------------------------------------- | |
| depth_anything_v2_configs = { | |
| 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
| 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, | |
| 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
| 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} | |
| } | |
| depth_anything_v2_encoder2name = { | |
| 'vits': 'Small', | |
| 'vitb': 'Base', | |
| 'vitl': 'Large', | |
| # 'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint | |
| } | |
| depth_anything_v2_name2encoder = {v: k for k, v in depth_anything_v2_encoder2name.items()} | |
| depth_anything_v2_models = {} | |
| # -------------------------------------------------------------------- | |
| def get_v1_pipe(model_name): | |
| return pipeline(task="depth-estimation", model=depth_anything_v1_name2checkpoint[model_name], device=DEVICE) | |
| def get_v2_model(model_name): | |
| encoder = depth_anything_v2_name2encoder[model_name] | |
| model = DepthAnythingV2(**depth_anything_v2_configs[encoder]) | |
| filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model") | |
| state_dict = torch.load(filepath, map_location="cpu") | |
| model.load_state_dict(state_dict) | |
| model = model.to(DEVICE).eval() | |
| return model | |
| def predict_depth_v1(image, model_name): | |
| if model_name not in depth_anything_v1_pipelines: | |
| depth_anything_v1_pipelines[model_name] = get_v1_pipe(model_name) | |
| pipe = depth_anything_v1_pipelines[model_name] | |
| return pipe(image) | |
| def predict_depth_v2(image, model_name): | |
| if model_name not in depth_anything_v2_models: | |
| depth_anything_v2_models[model_name] = get_v2_model(model_name) | |
| model = depth_anything_v2_models[model_name] | |
| return model.infer_image(image) | |
| def compute_depth_map_v2(image, model_select: str): | |
| depth = predict_depth_v2(image[:, :, ::-1], model_select) | |
| depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
| depth = depth.astype(np.uint8) | |
| colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8) | |
| return colored_depth | |
| def compute_depth_map_v1(image, model_select): | |
| pil_image = Image.fromarray(image) | |
| depth = predict_depth_v1(pil_image, model_select) | |
| depth = np.array(depth["depth"]).astype(np.uint8) | |
| colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8) | |
| return colored_depth | |
| def on_submit(image, model_v1_select, model_v2_select): | |
| logger.info(f"Computing depth for V1 model: {model_v1_select} and V2 model: {model_v2_select}") | |
| colored_depth_v1 = compute_depth_map_v1(image, model_v1_select) | |
| colored_depth_v2 = compute_depth_map_v2(image, model_v2_select) | |
| return colored_depth_v1, colored_depth_v2 | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown(title) | |
| gr.Markdown(description1) | |
| gr.Markdown("### Depth Prediction demo") | |
| with gr.Row(): | |
| model_select_v1 = gr.Dropdown(label="Depth Anything V1 Model", choices=list(depth_anything_v1_name2checkpoint.keys()), value=DEFAULT_V1_MODEL_NAME) | |
| model_select_v2 = gr.Dropdown(label="Depth Anything V2 Model", choices=list(depth_anything_v2_encoder2name.values()), value=DEFAULT_V2_MODEL_NAME) | |
| with gr.Row(): | |
| gr.Markdown() | |
| gr.Markdown("Depth Maps: V1 <-> V2") | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') | |
| depth_image_slider = ImageSlider(elem_id='img-display-output', position=0.5) | |
| submit = gr.Button(value="Compute Depth") | |
| submit.click(on_submit, inputs=[input_image, model_select_v1, model_select_v2], outputs=[depth_image_slider]) | |
| example_files = os.listdir('assets/examples') | |
| example_files.sort() | |
| example_files = [os.path.join('assets/examples', filename) for filename in example_files] | |
| examples = gr.Examples( | |
| examples=example_files, inputs=[input_image, model_select_v1, model_select_v2], | |
| outputs=[depth_image_slider], fn=on_submit, cache_examples="lazy", | |
| ) | |
| if __name__ == '__main__': | |
| demo.queue().launch(share=True) | |