Spaces:
Sleeping
Sleeping
File size: 32,617 Bytes
427d150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 |
import warnings
import torch
import torch.nn as nn
from torch.nn import functional as F
import matplotlib.pyplot as plt
import numpy as np
from models.grid_proto_fewshot import FewShotSeg
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
from models.SamWrapper import SamWrapper
from util.utils import cca, get_connected_components, rotate_tensor_no_crop, reverse_tensor, get_confidence_from_logits
from util.lora import inject_trainable_lora
from models.segment_anything.utils.transforms import ResizeLongestSide
import cv2
import time
from abc import ABC, abstractmethod
CONF_MODE="conf"
CENTROID_MODE="centroid"
BOTH_MODE="both"
POINT_MODES=(CONF_MODE, CENTROID_MODE, BOTH_MODE)
TYPE_ALPNET="alpnet"
TYPE_SAM="sam"
def plot_connected_components(cca_output, original_image, confidences:dict=None, title="debug/connected_components.png"):
num_labels, labels, stats, centroids = cca_output
# Create an output image with random colors for each component
output_image = np.zeros((labels.shape[0], labels.shape[1], 3), np.uint8)
for label in range(1, num_labels): # Start from 1 to skip the background
mask = labels == label
output_image[mask] = np.random.randint(0, 255, size=3)
# Plotting the original and the colored components image
plt.figure(figsize=(10, 5))
plt.subplot(121), plt.imshow(original_image), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)), plt.title('Connected Components')
if confidences is not None:
# Plot the axes color chart with the confidences, use the same colors as the connected components
plt.subplot(122)
scatter = plt.scatter(centroids[:, 0], centroids[:, 1], c=list(confidences.values()), cmap='jet')
plt.colorbar(scatter)
plt.savefig(title)
plt.close()
class SegmentationInput(ABC):
@abstractmethod
def set_query_images(self, query_images):
pass
def to(self, device):
pass
class SegmentationOutput(ABC):
@abstractmethod
def get_prediction(self):
pass
class ALPNetInput(SegmentationInput): # for alpnet
def __init__(self, support_images:list, support_labels:list, query_images:torch.Tensor, isval, val_wsize, show_viz=False, supp_fts=None):
self.supp_imgs = [support_images]
self.fore_mask = [support_labels]
self.back_mask = [[1 - sup_labels for sup_labels in support_labels]]
self.qry_imgs = [query_images]
self.isval = isval
self.val_wsize = val_wsize
self.show_viz = show_viz
self.supp_fts = supp_fts
def set_query_images(self, query_images):
self.qry_imgs = [query_images]
def to(self, device):
self.supp_imgs = [[supp_img.to(device) for way in self.supp_imgs for supp_img in way]]
self.fore_mask = [[fore_mask.to(device) for way in self.fore_mask for fore_mask in way]]
self.back_mask = [[back_mask.to(device) for way in self.back_mask for back_mask in way]]
self.qry_imgs = [qry_img.to(device) for qry_img in self.qry_imgs]
if self.supp_fts is not None:
self.supp_fts = self.supp_fts.to(device)
class ALPNetOutput(SegmentationOutput):
def __init__(self, pred, align_loss, sim_maps, assign_maps, proto_grid, supp_fts, qry_fts):
self.pred = pred
self.align_loss = align_loss
self.sim_maps = sim_maps
self.assign_maps = assign_maps
self.proto_grid = proto_grid
self.supp_fts = supp_fts
self.qry_fts = qry_fts
def get_prediction(self):
return self.pred
class SAMWrapperInput(SegmentationInput):
def __init__(self, image, image_labels):
self.image = image
self.image_labels = image_labels
def set_query_images(self, query_images):
B, C, H, W = query_images.shape
if isinstance(query_images, torch.Tensor):
query_images = query_images.cpu().detach().numpy()
assert B == 1, "batch size must be 1"
query_images = (query_images - query_images.min()) / (query_images.max() - query_images.min()) * 255
query_images = query_images.astype(np.uint8)
self.image = np.transpose(query_images[0], (1, 2, 0))
def to(self, device):
pass
class InputFactory(ABC):
@staticmethod
def create_input(input_type, query_image, support_images=None, support_labels=None, isval=False, val_wsize=None, show_viz=False, supp_fts=None, original_sz=None, img_sz=None, gts=None):
if input_type == TYPE_ALPNET:
return ALPNetInput(support_images, support_labels, query_image, isval, val_wsize, show_viz, supp_fts)
elif input_type == TYPE_SAM:
qimg = np.array(query_image.detach().cpu())
B,C,H,W = qimg.shape
assert B == 1, "batch size must be 1"
gts = np.array(gts.detach().cpu()).astype(np.uint8).reshape(H,W)
assert np.unique(gts).shape[0] <= 2, "support labels must be binary"
gts[gts > 0] = 1
qimg = qimg.reshape(H,W,C)
qimg = (qimg - qimg.min()) / (qimg.max() - qimg.min()) * 255
qimg = qimg.astype(np.uint8)
return SAMWrapperInput(qimg, gts)
else:
raise ValueError(f"input_type not supported")
class ModelWrapper(ABC):
def __init__(self, model):
self.model = model
def __call__(self, input_data: SegmentationInput)->SegmentationOutput:
pass
def state_dict(self):
return self.model.state_dict()
def load_state_dict(self, state_dict):
self.model.load_state_dict(state_dict)
def eval(self):
self.model.eval()
def train(self):
self.model.train()
def parameters(self):
pass
class ALPNetWrapper(ModelWrapper):
def __init__(self, model: FewShotSeg):
super().__init__(model)
def __call__(self, input_data: ALPNetInput):
output = self.model(**input_data.__dict__)
output = ALPNetOutput(*output)
return output.pred
def parameters(self):
return self.model.encoder.parameters()
def train(self):
self.model.encoder.train()
class SamWrapperWrapper(ModelWrapper):
def __init__(self, model:SamWrapper):
super().__init__(model)
def __call__(self, input_data: SAMWrapperInput):
pred = self.model(**input_data.__dict__)
# make pred look like logits
pred = torch.tensor(pred).float()[None, None, ...]
pred = torch.cat([1-pred, pred], dim=1)
return pred
def to(self, device):
self.model.sam.to(device)
class ProtoSAM(nn.Module):
def __init__(self, image_size, coarse_segmentation_model:ModelWrapper, sam_pretrained_path="pretrained_model/sam_default.pth", num_points_for_sam=1, use_points=True, use_bbox=False, use_mask=False, debug=False, use_cca=False, point_mode=CONF_MODE, use_sam_trans=True, coarse_pred_only=False, alpnet_image_size=None, use_neg_points=False, ):
super().__init__()
if isinstance(image_size, int):
image_size = (image_size, image_size)
self.image_size = image_size
self.coarse_segmentation_model = coarse_segmentation_model
self.get_sam(sam_pretrained_path, use_sam_trans)
self.num_points_for_sam = num_points_for_sam
self.use_points = use_points
self.use_bbox = use_bbox # if False then uses points
self.use_mask = use_mask
self.use_neg_points = use_neg_points
assert self.use_bbox or self.use_points or self.use_mask, "must use at least one of bbox, points, or mask"
self.use_cca = use_cca
self.point_mode = point_mode
if self.point_mode not in POINT_MODES:
raise ValueError(f"point mode must be one of {POINT_MODES}")
self.debug=debug
self.coarse_pred_only = coarse_pred_only
def get_sam(self, checkpoint_path, use_sam_trans):
model_type="vit_b" # TODO make generic?
if 'vit_h' in checkpoint_path:
model_type = "vit_h"
self.sam = sam_model_registry[model_type](checkpoint=checkpoint_path).eval()
self.predictor = SamPredictor(self.sam)
self.sam.requires_grad_(False)
if use_sam_trans:
# sam_trans = ResizeLongestSide(self.sam.image_encoder.img_size, pixel_mean=[0], pixel_std=[1])
sam_trans = ResizeLongestSide(self.sam.image_encoder.img_size)
sam_trans.pixel_mean = torch.tensor([0, 0, 0]).view(3, 1, 1)
sam_trans.pixel_std = torch.tensor([1, 1, 1]).view(3, 1, 1)
else:
sam_trans = None
self.sam_trans = sam_trans
def get_bbox(self, pred):
'''
pred tensor of shape (H, W) where 1 represents foreground and 0 represents background
returns a list of 2d points representing the bbox
'''
if isinstance(pred, np.ndarray):
pred = torch.tensor(pred)
# get the indices of the foreground points
indices = torch.nonzero(pred)
# get the min and max of the indices
min_x = indices[:, 1].min()
max_x = indices[:, 1].max()
min_y = indices[:, 0].min()
max_y = indices[:, 0].max()
# get the bbox
bbox = [[min_y, min_x], [min_y, max_x], [max_y, max_x], [max_y, min_x]]
return bbox
def get_bbox_per_cc(self, conn_components):
"""
conn_components: output of cca function
return list of bboxes per connected component, each bbox is a list of 2d points
"""
bboxes = []
for i in range(1, conn_components[0]):
# get the indices of the foreground points
indices = torch.nonzero(torch.tensor(conn_components[1] == i))
# get the min and max of the indices
min_x = indices[:, 1].min()
max_x = indices[:, 1].max()
min_y = indices[:, 0].min()
max_y = indices[:, 0].max()
# get the bbox
# bbox = [[min_y, min_x], [min_y, max_x], [max_y, max_x], [max_y, min_x]]
# bbox = [[min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y]]
# bbox should be in a XYXY format
bbox = [min_x, min_y, max_x, max_y]
bboxes.append(bbox)
bboxes = np.array(bboxes)
return bboxes
def get_most_conf_points(self, output_p_fg, pred, k):
'''
get the k most confident points from pred
output_p: 3d tensor of shape (H, W)
pred: 2d tensor of shape (H, W) where 1 represents foreground and 0 represents background
'''
# Create a mask where pred is 1
mask = pred.bool()
# Apply the mask to output_p_fg
masked_output_p_fg = output_p_fg[mask]
if masked_output_p_fg.numel() == 0:
return None, None
# Get the top k probabilities and their indices
confidences, indices = torch.topk(masked_output_p_fg, k)
# Get the locations of the top k points in xy format
locations = torch.nonzero(mask)[indices]
# convert locations to xy format
locations = locations[:, [1, 0]]
# convert locations to list of lists
# points = [loc.tolist() for loc in locations]
return locations.numpy(), [float(conf.item()) for conf in confidences]
def plot_most_conf_points(self, points, confidences, pred, image, bboxes=None, title=None):
'''
points: np array of shape (N, 2) where each row is a point in xy format
pred: 2d tensor of shape (H, W) where 1 represents foreground and 0 represents background
image: 2d tensor of shape (H,W) representing the image
bbox: list or np array of shape (N, 4) where each row is a bbox in xyxy format
'''
warnings.filterwarnings('ignore', category=UserWarning)
if isinstance(pred, torch.Tensor):
pred = pred.cpu().detach().numpy()
if len(image.shape) == 3 and image.shape[0] == 3:
image = image.permute(1, 2, 0)
if title is None:
title="debug/most_conf_points.png"
fig = plt.figure()
image = (image - image.min()) / (image.max() - image.min())
plt.imshow(image)
plt.imshow(pred, alpha=0.5)
for i, point in enumerate(points):
plt.scatter(point[0][0], point[0][1], cmap='viridis', marker='*', c='red')
if confidences is not None:
plt.text(point[0], point[1], f"{confidences[i]:.3f}", fontsize=12, color='red')
# assume points is a list of lists
if bboxes is not None:
for bbox in bboxes:
if bbox is None:
continue
bbox = np.array(bbox)
# plt.scatter(bbox[:, 1], bbox[:, 0], c='red')
# plot a line connecting the points
box = np.array([[bbox[0], bbox[1]], [bbox[2], bbox[1]], [bbox[2], bbox[3]], [bbox[0], bbox[3]]])
box = np.vstack([box, box[0]])
plt.plot(box[:, 0], box[:, 1], c='green')
plt.colorbar()
fig.savefig(title)
plt.close(fig)
def plot_sam_preds(self, masks, scores, image, input_point, input_label, input_box=None):
if len(image.shape) == 3:
image = image.permute(1, 2, 0)
image = (image - image.min()) / (image.max() - image.min())
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10,10))
plt.imshow(image)
show_mask(mask, plt.gca())
if input_point is not None:
show_points(input_point, input_label, plt.gca())
if input_box is not None:
show_box(input_box, plt.gca())
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
# plt.axis('off')
plt.savefig(f'debug/sam_mask_{i+1}.png')
plt.close()
if i > 5:
break
def get_sam_input_points(self, conn_components, output_p, get_neg_points=False, l=1):
"""
args:
conn_components: output of cca function
output_p: 3d tensor of shape (1, 2, H, W)
get_neg_points: bool, if True then return the negative points
l: int, number of negative points to get
"""
sam_input_points = []
sam_neg_points = []
fg_p = output_p[0, 1].detach().cpu()
if get_neg_points:
# get global negative points
bg_p = output_p[0, 0].detach().cpu()
bg_p[bg_p < 0.95] = 0
bg_pred = torch.where(bg_p > 0, 1, 0)
glob_neg_points, _ = self.get_most_conf_points(bg_p, bg_pred, 1)
if self.debug:
# plot the bg_p as a heatmap
plt.figure()
plt.imshow(bg_p)
plt.colorbar()
plt.savefig('debug/bg_p_heatmap.png')
plt.close()
for i, cc_id in enumerate(np.unique(conn_components[1])):
# get self.num_points_for_sam most confident points from pred
if cc_id == 0:
continue # skip background
pred = torch.tensor(conn_components[1] == cc_id).float()
if self.point_mode == CONF_MODE:
points, confidences = self.get_most_conf_points(fg_p, pred, self.num_points_for_sam) # (N, 2)
elif self.point_mode == CENTROID_MODE:
points = conn_components[3][cc_id][None, :] # (1, 2)
confidences = [1 for _ in range(len(points))]
elif self.point_mode == BOTH_MODE:
points, confidences = self.get_most_conf_points(fg_p, pred, self.num_points_for_sam)
point = conn_components[3][cc_id][None, :]
points = np.vstack([points, point]) # (N+1, 2)
confidences.append(1)
else:
raise NotImplementedError(f"point mode {self.point_mode} not implemented")
sam_input_points.append(np.array(points))
if get_neg_points:
pred_uint8 = (pred.numpy() * 255).astype(np.uint8)
# Dilate the mask to expand it
kernel_size = 3 # Size of the dilation kernel, adjust accordingly
kernel = np.ones((kernel_size, kernel_size), np.uint8)
dilation_iterations = 10 # Number of times dilation is applied, adjust as needed
dilated_mask = cv2.dilate(pred_uint8, kernel, iterations=dilation_iterations)
# Subtract the original mask from the dilated mask
# This will give a boundary that is only outside the original mask
outside_boundary = dilated_mask - pred_uint8
# Convert back to torch tensor and normalize
boundary = torch.tensor(outside_boundary).float() / 255
try:
bg_p = output_p[0, 0].detach().cpu()
neg_points, neg_confidences = self.get_most_conf_points(bg_p, boundary, l)
except RuntimeError as e:
# make each point (None, None)
neg_points = None
# append global negative points to the negative points
if neg_points is not None and glob_neg_points is not None:
neg_points = np.vstack([neg_points, glob_neg_points])
else:
neg_points = glob_neg_points if neg_points is None else neg_points
if self.debug and neg_points is not None:
# draw an image with 2 subplots, one is the pred and the other is the boundary
plt.figure()
plt.subplot(121)
plt.imshow(pred)
plt.imshow(boundary, alpha=0.5)
# plot the neg points
plt.scatter(neg_points[:, 0], neg_points[:, 1], cmap='viridis', marker='*', c='red')
plt.subplot(122)
plt.imshow(pred)
plt.scatter(neg_points[:, 0], neg_points[:, 1], cmap='viridis', marker='*', c='red')
plt.savefig('debug/pred_and_boundary.png')
plt.close()
sam_neg_points.append(neg_points)
else:
# create a list of None same shape as points
sam_neg_points = [None for _ in range(len(sam_input_points))]
sam_input_labels = np.array([l+1 for l, cc_points in enumerate(sam_input_points) for _ in range(len(cc_points))])
sam_input_points = np.stack(sam_input_points) # should be of shape (num_connected_components, num_points_for_sam, 2)
# if get_neg_points:
sam_neg_input_points = np.stack(sam_neg_points) if sam_neg_points is not None else None
if sam_neg_input_points is not None:
sam_neg_input_points = sam_neg_points
sam_neg_input_labels = np.array([0] * len(sam_neg_input_points) )
else:
sam_neg_input_points = None
sam_neg_input_labels = None
return sam_input_points, sam_input_labels, sam_neg_input_points, sam_neg_input_labels
def get_sam_input_mask(self, conn_components):
sam_input_masks = []
sam_input_mask_lables = []
for i, cc_id in enumerate(np.unique(conn_components[1])):
# get self.num_points_for_sam most confident points from pred
if cc_id == 0:
continue
pred = torch.tensor(conn_components[1] == cc_id).float()
sam_input_masks.append(pred)
sam_input_mask_lables.append(cc_id)
sam_input_masks = np.stack(sam_input_masks)
sam_input_mask_lables = np.array(sam_input_mask_lables)
return sam_input_masks, sam_input_mask_lables
def predict_w_masks(self, sam_input_masks, qry_img, original_size):
masks = []
scores = []
for in_mask in sam_input_masks:
in_mask = cv2.resize(in_mask, (256, 256), interpolation=cv2.INTER_NEAREST)
in_mask[in_mask == 1] = 10
in_mask[in_mask == 0] = -8
assert qry_img.max() <= 255 and qry_img.min() >= 0 and qry_img.dtype == np.uint8
self.predictor.set_image(qry_img)
mask, score, _ = self.predictor.predict(
mask_input=in_mask[None, ...].astype(np.uint8),
multimask_output=True)
# get max index from score
if self.debug:
# plot each channel of mask
fig, ax = plt.subplots(1, 4, figsize=(15, 5))
for i in range(mask.shape[0]):
ax[i].imshow(qry_img)
ax[i].imshow(mask[i], alpha=0.5)
ax[i].set_title(f"Mask {i+1}, Score: {score[i]:.3f}", fontsize=18)
# ax[i].axis('off')
ax[-1].imshow(cv2.resize(in_mask, original_size, interpolation=cv2.INTER_NEAREST))
fig.savefig(f'debug/sam_mask_from_mask_prompts.png')
plt.close(fig)
max_index = score.argmax()
masks.append(mask[max_index])
scores.append(score[max_index])
return masks, scores
def predict_w_points_bbox(self, sam_input_points, bboxes, sam_neg_input_points, qry_img, pred, return_logits=False):
masks, scores = [], []
self.predictor.set_image(qry_img)
# if sam_input_points is None:
# sam_input_points = [None for _ in range(len(bboxes))]
for point, bbox_xyxy, neg_point in zip(sam_input_points, bboxes, sam_neg_input_points):
assert qry_img.max() <= 255 and qry_img.min() >= 0 and qry_img.dtype == np.uint8
points = point
point_labels = np.array([1] * len(point)) if point is not None else None
if self.use_neg_points:
neg_points = [npoint for npoint in neg_point if None not in npoint]
points = np.vstack([point, *neg_points])
point_labels = np.array([1] * len(point) + [0] * len(neg_points))
if self.debug:
self.plot_most_conf_points(points[:, None, ...], None, pred, qry_img, bboxes=bbox_xyxy[None,...] if bbox_xyxy is not None else None, title="debug/pos_neg_points.png") # TODO add plots for all points not just the first set of points
mask, score, _ = self.predictor.predict(
point_coords=points,
point_labels=point_labels,
# box=bbox_xyxy[None, :] if bbox_xyxy is not None else None,
box = bbox_xyxy if bbox_xyxy is not None else None,
# mask_input=sam_mask_input,
return_logits=return_logits,
multimask_output=False if self.use_cca else True
)
# best_pred_idx = np.argmax(score)
best_pred_idx = 0
masks.append(mask[best_pred_idx])
scores.append(score[best_pred_idx])
if self.debug:
# pass
self.plot_sam_preds(mask, score, qry_img[...,0], points.reshape(-1,2) if sam_input_points is not None else None, point_labels, input_box=bbox_xyxy if bbox_xyxy is not None else None)
return masks, scores
def forward(self, query_image, coarse_model_input, degrees_rotate=0):
"""
query_image: 3d tensor of shape (1, 3, H, W)
images should be normalized with mean and std but not to [0, 1]?
"""
original_size = query_image.shape[-2]
# rotate query_image by degrees_rotate
start_time = time.time()
rotated_img, (rot_h, rot_w) = rotate_tensor_no_crop(query_image, degrees_rotate)
# print(f"rotating query image took {time.time() - start_time} seconds")
start_time = time.time()
coarse_model_input.set_query_images(rotated_img)
output_logits_rot = self.coarse_segmentation_model(coarse_model_input)
# print(f"ALPNet took {time.time() - start_time} seconds")
if degrees_rotate != 0:
start_time = time.time()
output_logits = reverse_tensor(output_logits_rot, rot_h, rot_w, -degrees_rotate)
# print(f"reversing rotated output_logits took {time.time() - start_time} seconds")
else:
output_logits = output_logits_rot
# check if softmax is needed
output_p = output_logits.softmax(dim=1)
# output_p = output_logits
pred = output_logits.argmax(dim=1)[0]
if self.debug:
_pred = np.array(output_logits.argmax(dim=1)[0].detach().cpu())
plt.subplot(132)
plt.imshow(query_image[0,0].detach().cpu())
plt.imshow(_pred, alpha=0.5)
plt.subplot(131)
# plot heatmap of prob of being fg
plt.imshow(output_p[0, 1].detach().cpu())
# plot rotated query image and rotated pred
output_p_rot = output_logits_rot.softmax(dim=1)
_pred_rot = np.array(output_p_rot.argmax(dim=1)[0].detach().cpu())
_pred_rot = F.interpolate(torch.tensor(_pred_rot).unsqueeze(0).unsqueeze(0).float(), size=original_size, mode='nearest')[0][0]
plt.subplot(133)
plt.imshow(rotated_img[0, 0].detach().cpu())
plt.imshow(_pred_rot, alpha=0.5)
plt.savefig('debug/coarse_pred.png')
plt.close()
if self.coarse_pred_only:
output_logits = F.interpolate(output_logits, size=original_size, mode='bilinear') if output_logits.shape[-2:] != original_size else output_logits
pred = output_logits.argmax(dim=1)[0]
conf = get_confidence_from_logits(output_logits)
if self.use_cca:
_pred = np.array(pred.detach().cpu())
_pred, conf = cca(_pred, output_logits, return_conf=True)
pred = torch.from_numpy(_pred)
if self.training:
return output_logits, [conf]
# Ensure pred is a float tensor for consistent visualization
return pred.float(), [conf]
if query_image.shape[-2:] != self.image_size:
query_image = F.interpolate(query_image, size=self.image_size, mode='bilinear')
output_logits = F.interpolate(output_logits, size=self.image_size, mode='bilinear')
# if need_softmax(output_logits):
# output_logits = output_logits.softmax(dim=1)
# output_p = output_logits
output_p = output_logits.softmax(dim=1)
pred = output_p.argmax(dim=1)[0]
_pred = np.array(output_p.argmax(dim=1)[0].detach().cpu())
start_time = time.time()
if self.use_cca:
conn_components = cca(_pred, output_logits, return_cc=True)
conf=None
else:
conn_components, conf = get_connected_components(_pred, output_logits, return_conf=True)
if self.debug:
plot_connected_components(conn_components, query_image[0,0].detach().cpu(), conf)
# print(f"connected components took {time.time() - start_time} seconds")
if _pred.max() == 0:
return output_p.argmax(dim=1)[0], [0]
# get bbox from pred
if self.use_bbox:
start_time = time.time()
try:
bboxes = self.get_bbox_per_cc(conn_components)
except:
bboxes = [None] * conn_components[0]
else:
bboxes = [None] * conn_components[0]
# print(f"getting bboxes took {time.time() - start_time} seconds")
start_time = time.time()
if self.use_points:
sam_input_points, sam_input_point_labels, sam_neg_input_points, sam_neg_input_labels = self.get_sam_input_points(conn_components, output_p, get_neg_points=self.use_neg_points, l=1)
else:
sam_input_points = [None] * conn_components[0]
sam_input_point_labels = [None] * conn_components[0]
sam_neg_input_points = [None] * conn_components[0]
sam_neg_input_labels = [None] * conn_components[0]
# print(f"getting sam input points took {time.time() - start_time} seconds")
if self.use_mask:
sam_input_masks, sam_input_mask_labels = self.get_sam_input_mask(conn_components)
else:
sam_input_masks = None
sam_input_mask_labels = None
if self.debug and sam_input_points is not None:
title = f'debug/most_conf_points.png'
if self.use_cca:
title = f'debug/most_conf_points_cca.png'
# convert points to a list where each item is a list of 2 elements in xy format
self.plot_most_conf_points(sam_input_points, None, _pred, query_image[0, 0].detach().cpu(), bboxes=bboxes, title=title) # TODO add plots for all points not just the first set of points
# self.sam_trans = None
if self.sam_trans is None:
query_image = query_image.permute(1, 2, 0).detach().cpu().numpy()
else:
query_image = self.sam_trans.apply_image_torch(query_image[0])
query_image = self.sam_trans.preprocess(query_image)
query_image = query_image.permute(1, 2, 0).detach().cpu().numpy()
# mask = self.sam_trans.preprocess(mask)
query_image = ((query_image - query_image.min()) / (query_image.max() - query_image.min()) * 255).astype(np.uint8)
if self.use_mask:
masks, scores = self.predict_w_masks(sam_input_masks, query_image, original_size)
start_time = time.time()
if self.use_points or self.use_bbox:
masks, scores = self.predict_w_points_bbox(sam_input_points, bboxes, sam_neg_input_points, query_image, pred, return_logits=True if self.training else False)
# print(f"predicting w points/bbox took {time.time() - start_time} seconds")
pred = sum(masks)
if not self.training:
pred = pred > 0
pred = torch.tensor(pred).float().to(output_p.device)
# pred = torch.tensor(masks[0]).float().cuda()
# resize pred to the size of the input
pred = F.interpolate(pred.unsqueeze(0).unsqueeze(0), size=original_size, mode='nearest')[0][0]
return pred, scores
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
def need_softmax(tensor, dim=1):
return not torch.all(torch.isclose(tensor.sum(dim=dim), torch.ones_like(tensor.sum(dim=dim))) & (tensor >= 0))
|