File size: 32,617 Bytes
427d150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
import warnings
import torch
import torch.nn as nn
from torch.nn import functional as F
import matplotlib.pyplot as plt
import numpy as np
from models.grid_proto_fewshot import FewShotSeg
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
from models.SamWrapper import SamWrapper
from util.utils import cca, get_connected_components, rotate_tensor_no_crop, reverse_tensor, get_confidence_from_logits
from util.lora import inject_trainable_lora
from models.segment_anything.utils.transforms import ResizeLongestSide
import cv2
import time
from abc import ABC, abstractmethod

CONF_MODE="conf"
CENTROID_MODE="centroid"
BOTH_MODE="both"
POINT_MODES=(CONF_MODE, CENTROID_MODE, BOTH_MODE)

TYPE_ALPNET="alpnet"
TYPE_SAM="sam"

def plot_connected_components(cca_output, original_image, confidences:dict=None, title="debug/connected_components.png"):
    num_labels, labels, stats, centroids = cca_output
    # Create an output image with random colors for each component
    output_image = np.zeros((labels.shape[0], labels.shape[1], 3), np.uint8)
    for label in range(1, num_labels):  # Start from 1 to skip the background
        mask = labels == label
        output_image[mask] = np.random.randint(0, 255, size=3)

    # Plotting the original and the colored components image
    plt.figure(figsize=(10, 5))
    plt.subplot(121), plt.imshow(original_image), plt.title('Original Image')
    plt.subplot(122), plt.imshow(cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)), plt.title('Connected Components')
    if confidences is not None:
        # Plot the axes color chart with the confidences, use the same colors as the connected components
        plt.subplot(122)
        scatter = plt.scatter(centroids[:, 0], centroids[:, 1], c=list(confidences.values()), cmap='jet')
        plt.colorbar(scatter)

    plt.savefig(title)
    plt.close()

class SegmentationInput(ABC):
    @abstractmethod
    def set_query_images(self, query_images):
        pass
    
    def to(self, device):
        pass
    
class SegmentationOutput(ABC):
    @abstractmethod
    def get_prediction(self):
        pass

class ALPNetInput(SegmentationInput): # for alpnet
    def __init__(self, support_images:list, support_labels:list, query_images:torch.Tensor, isval, val_wsize, show_viz=False, supp_fts=None):
        self.supp_imgs = [support_images]
        self.fore_mask = [support_labels]
        self.back_mask = [[1 - sup_labels for sup_labels in support_labels]]
        self.qry_imgs = [query_images]
        self.isval = isval
        self.val_wsize = val_wsize
        self.show_viz = show_viz
        self.supp_fts = supp_fts
        
    def set_query_images(self, query_images):
        self.qry_imgs = [query_images]
        
    def to(self, device):
        self.supp_imgs = [[supp_img.to(device) for way in self.supp_imgs for supp_img in way]]
        self.fore_mask = [[fore_mask.to(device) for way in self.fore_mask for fore_mask in way]]
        self.back_mask = [[back_mask.to(device) for way in self.back_mask for back_mask in way]]
        self.qry_imgs = [qry_img.to(device) for qry_img in self.qry_imgs]
        if self.supp_fts is not None:
            self.supp_fts = self.supp_fts.to(device)

class ALPNetOutput(SegmentationOutput):
    def __init__(self, pred, align_loss, sim_maps, assign_maps, proto_grid, supp_fts, qry_fts):
        self.pred = pred
        self.align_loss = align_loss
        self.sim_maps = sim_maps
        self.assign_maps = assign_maps
        self.proto_grid = proto_grid
        self.supp_fts = supp_fts
        self.qry_fts = qry_fts
        
    def get_prediction(self):
        return self.pred
        
class SAMWrapperInput(SegmentationInput):
    def __init__(self, image, image_labels):
        self.image = image
        self.image_labels = image_labels
        
    def set_query_images(self, query_images):
        B, C, H, W = query_images.shape
        if isinstance(query_images, torch.Tensor):
            query_images = query_images.cpu().detach().numpy()
        assert B == 1, "batch size must be 1"
        query_images = (query_images - query_images.min()) / (query_images.max() - query_images.min()) * 255
        query_images = query_images.astype(np.uint8)
        self.image = np.transpose(query_images[0], (1, 2, 0))
        
    def to(self, device):
        pass


class InputFactory(ABC):
    @staticmethod
    def create_input(input_type, query_image, support_images=None, support_labels=None, isval=False, val_wsize=None, show_viz=False, supp_fts=None, original_sz=None, img_sz=None, gts=None):
        
        if input_type == TYPE_ALPNET:
            return ALPNetInput(support_images, support_labels, query_image, isval, val_wsize, show_viz, supp_fts)
        elif input_type == TYPE_SAM:
            qimg = np.array(query_image.detach().cpu())
            B,C,H,W = qimg.shape
            assert B == 1, "batch size must be 1"
            gts = np.array(gts.detach().cpu()).astype(np.uint8).reshape(H,W)
            assert np.unique(gts).shape[0] <= 2, "support labels must be binary"
            gts[gts > 0] = 1
            qimg = qimg.reshape(H,W,C)
            qimg = (qimg - qimg.min()) / (qimg.max() - qimg.min()) * 255
            qimg = qimg.astype(np.uint8)
            return SAMWrapperInput(qimg, gts)
        else:
            raise ValueError(f"input_type not supported")
 
    
class ModelWrapper(ABC):
    def __init__(self, model):
        self.model = model
        
    def __call__(self, input_data: SegmentationInput)->SegmentationOutput:
        pass

    def state_dict(self):
        return self.model.state_dict()
    
    def load_state_dict(self, state_dict):
        self.model.load_state_dict(state_dict)
    
    def eval(self):
        self.model.eval()
        
    def train(self):
        self.model.train() 
    
    def parameters(self):
        pass
        
class ALPNetWrapper(ModelWrapper):
    def __init__(self, model: FewShotSeg):
        super().__init__(model)
        
    def __call__(self, input_data: ALPNetInput):
        output = self.model(**input_data.__dict__)
        output = ALPNetOutput(*output)
        return output.pred
    
    def parameters(self):
        return self.model.encoder.parameters()
    
    def train(self):
        self.model.encoder.train()
        
class SamWrapperWrapper(ModelWrapper):
    def __init__(self, model:SamWrapper):
        super().__init__(model)
        
    def __call__(self, input_data: SAMWrapperInput):
        pred = self.model(**input_data.__dict__)
        # make pred look like logits
        pred = torch.tensor(pred).float()[None, None, ...]
        pred = torch.cat([1-pred, pred], dim=1)
        return pred

    def to(self, device):
        self.model.sam.to(device)
    
class ProtoSAM(nn.Module):
    def __init__(self, image_size, coarse_segmentation_model:ModelWrapper, sam_pretrained_path="pretrained_model/sam_default.pth", num_points_for_sam=1, use_points=True, use_bbox=False, use_mask=False, debug=False, use_cca=False, point_mode=CONF_MODE, use_sam_trans=True, coarse_pred_only=False, alpnet_image_size=None, use_neg_points=False, ):
        super().__init__()
        if isinstance(image_size, int):
            image_size = (image_size, image_size)
        self.image_size = image_size
        self.coarse_segmentation_model = coarse_segmentation_model
        self.get_sam(sam_pretrained_path, use_sam_trans)
        self.num_points_for_sam = num_points_for_sam
        self.use_points = use_points
        self.use_bbox = use_bbox # if False then uses points
        self.use_mask = use_mask
        self.use_neg_points = use_neg_points
        assert self.use_bbox or self.use_points or self.use_mask, "must use at least one of bbox, points, or mask"
        self.use_cca = use_cca
        self.point_mode = point_mode
        if self.point_mode not in POINT_MODES:
            raise ValueError(f"point mode must be one of {POINT_MODES}")
        self.debug=debug
        self.coarse_pred_only = coarse_pred_only
         
    def get_sam(self, checkpoint_path, use_sam_trans):
        model_type="vit_b" # TODO make generic?
        if 'vit_h' in checkpoint_path:
            model_type = "vit_h"
        self.sam = sam_model_registry[model_type](checkpoint=checkpoint_path).eval()
        self.predictor = SamPredictor(self.sam)
        self.sam.requires_grad_(False)
        if use_sam_trans:
            # sam_trans = ResizeLongestSide(self.sam.image_encoder.img_size, pixel_mean=[0], pixel_std=[1])
            sam_trans = ResizeLongestSide(self.sam.image_encoder.img_size)
            sam_trans.pixel_mean = torch.tensor([0, 0, 0]).view(3, 1, 1)
            sam_trans.pixel_std = torch.tensor([1, 1, 1]).view(3, 1, 1)
        else:
            sam_trans = None
            
        self.sam_trans = sam_trans
        
    def get_bbox(self, pred):
        '''

        pred tensor of shape (H, W) where 1 represents foreground and 0 represents background

        returns a list of 2d points representing the bbox

        ''' 
        if isinstance(pred, np.ndarray):
            pred = torch.tensor(pred)
        # get the indices of the foreground points
        indices = torch.nonzero(pred)
        # get the min and max of the indices
        min_x = indices[:, 1].min()
        max_x = indices[:, 1].max()
        min_y = indices[:, 0].min()
        max_y = indices[:, 0].max()
        # get the bbox
        bbox = [[min_y, min_x], [min_y, max_x], [max_y, max_x], [max_y, min_x]]
        
         
        return bbox  
    
    def get_bbox_per_cc(self, conn_components):
        """

        conn_components: output of cca function

        return list of bboxes per connected component, each bbox is a list of 2d points

        """
        bboxes = []
        for i in range(1, conn_components[0]):
            # get the indices of the foreground points
            indices = torch.nonzero(torch.tensor(conn_components[1] == i))
            # get the min and max of the indices
            min_x = indices[:, 1].min()
            max_x = indices[:, 1].max()
            min_y = indices[:, 0].min()
            max_y = indices[:, 0].max()
            # get the bbox
            # bbox = [[min_y, min_x], [min_y, max_x], [max_y, max_x], [max_y, min_x]]
            # bbox = [[min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y]]
            # bbox should be in a XYXY format
            bbox = [min_x, min_y, max_x, max_y]
            bboxes.append(bbox)

        bboxes = np.array(bboxes)
        return bboxes
    
    def get_most_conf_points(self, output_p_fg, pred, k):
        '''

        get the k most confident points from pred

        output_p: 3d tensor of shape (H, W)

        pred: 2d tensor of shape (H, W) where 1 represents foreground and 0 represents background

        '''
        # Create a mask where pred is 1
        mask = pred.bool()

        # Apply the mask to output_p_fg
        masked_output_p_fg = output_p_fg[mask]
        if masked_output_p_fg.numel() == 0:
            return None, None
        # Get the top k probabilities and their indices
        confidences, indices = torch.topk(masked_output_p_fg, k)

        # Get the locations of the top k points in xy format
        locations = torch.nonzero(mask)[indices]
        # convert locations to xy format
        locations = locations[:, [1, 0]]
        # convert locations to list of lists
        # points = [loc.tolist() for loc in locations]
        
        return locations.numpy(), [float(conf.item()) for conf in confidences]
    
    
    def plot_most_conf_points(self, points, confidences, pred, image, bboxes=None, title=None):
        '''

        points: np array of shape (N, 2) where each row is a point in xy format

        pred: 2d tensor of shape (H, W) where 1 represents foreground and 0 represents background

        image: 2d tensor of shape (H,W) representing the image

        bbox: list or np array of shape (N, 4) where each row is a bbox in xyxy format

        '''
        warnings.filterwarnings('ignore', category=UserWarning)
        if isinstance(pred, torch.Tensor):
            pred = pred.cpu().detach().numpy()
        if len(image.shape) == 3 and image.shape[0] == 3:
            image = image.permute(1, 2, 0)
        if title is None:
            title="debug/most_conf_points.png"
            
        fig = plt.figure()
        image = (image - image.min()) / (image.max() - image.min())
        plt.imshow(image)
        plt.imshow(pred, alpha=0.5)
        for i, point in enumerate(points):
            plt.scatter(point[0][0], point[0][1], cmap='viridis', marker='*', c='red')
            if confidences is not None:
                plt.text(point[0], point[1], f"{confidences[i]:.3f}", fontsize=12, color='red')
        # assume points is a list of lists
        if bboxes is not None:
            for bbox in bboxes:
                if bbox is None:
                    continue
                bbox = np.array(bbox)
                # plt.scatter(bbox[:, 1], bbox[:, 0], c='red')
                # plot a line connecting the points
                box = np.array([[bbox[0], bbox[1]], [bbox[2], bbox[1]], [bbox[2], bbox[3]], [bbox[0], bbox[3]]])
                box = np.vstack([box, box[0]])
                plt.plot(box[:, 0], box[:, 1], c='green')
        plt.colorbar()
        fig.savefig(title)
        plt.close(fig)
        
    def plot_sam_preds(self, masks, scores, image, input_point, input_label, input_box=None):
        if len(image.shape) == 3:
            image = image.permute(1, 2, 0)
        image = (image - image.min()) / (image.max() - image.min())
        for i, (mask, score) in enumerate(zip(masks, scores)):
            plt.figure(figsize=(10,10))
            plt.imshow(image)
            show_mask(mask, plt.gca())
            if input_point is not None:
                show_points(input_point, input_label, plt.gca())
            if input_box is not None:
                show_box(input_box, plt.gca())
            plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
            # plt.axis('off')
            plt.savefig(f'debug/sam_mask_{i+1}.png')
            plt.close()
            if i > 5:
                break
        
    def get_sam_input_points(self, conn_components, output_p, get_neg_points=False, l=1): 
        """

        args:

        conn_components: output of cca function

        output_p: 3d tensor of shape (1, 2, H, W)

        get_neg_points: bool, if True then return the negative points

        l: int, number of negative points to get

        """
        sam_input_points = []
        sam_neg_points = []
        fg_p = output_p[0, 1].detach().cpu()
        
        if get_neg_points:
            # get global negative points
            bg_p = output_p[0, 0].detach().cpu()
            bg_p[bg_p < 0.95] = 0
            bg_pred = torch.where(bg_p > 0, 1, 0)
            glob_neg_points, _ = self.get_most_conf_points(bg_p, bg_pred, 1)
            if self.debug:
                # plot the bg_p as a heatmap
                plt.figure()
                plt.imshow(bg_p)
                plt.colorbar()
                plt.savefig('debug/bg_p_heatmap.png')
                plt.close()
        
        for i, cc_id in enumerate(np.unique(conn_components[1])):
            # get self.num_points_for_sam most confident points from pred
            if cc_id == 0:
                continue  # skip background
            pred = torch.tensor(conn_components[1] == cc_id).float()

            if self.point_mode == CONF_MODE:
                points, confidences = self.get_most_conf_points(fg_p, pred, self.num_points_for_sam)  # (N, 2)
            elif self.point_mode == CENTROID_MODE:
                points = conn_components[3][cc_id][None, :]  # (1, 2)
                confidences = [1 for _ in range(len(points))]
            elif self.point_mode == BOTH_MODE:
                points, confidences = self.get_most_conf_points(fg_p, pred, self.num_points_for_sam)
                point = conn_components[3][cc_id][None, :]
                points = np.vstack([points, point])  # (N+1, 2)
                confidences.append(1)
            else:
                raise NotImplementedError(f"point mode {self.point_mode} not implemented")
            sam_input_points.append(np.array(points))
            
            if get_neg_points:
                pred_uint8 = (pred.numpy() * 255).astype(np.uint8)

                # Dilate the mask to expand it
                kernel_size = 3  # Size of the dilation kernel, adjust accordingly
                kernel = np.ones((kernel_size, kernel_size), np.uint8)
                dilation_iterations = 10  # Number of times dilation is applied, adjust as needed
                dilated_mask = cv2.dilate(pred_uint8, kernel, iterations=dilation_iterations)

                # Subtract the original mask from the dilated mask
                # This will give a boundary that is only outside the original mask
                outside_boundary = dilated_mask - pred_uint8

                # Convert back to torch tensor and normalize
                boundary = torch.tensor(outside_boundary).float() / 255
                try:
                    bg_p = output_p[0, 0].detach().cpu()
                    neg_points, neg_confidences = self.get_most_conf_points(bg_p, boundary, l)
                except RuntimeError as e:
                    # make each point (None, None)
                    neg_points = None
                # append global negative points to the negative points
                if neg_points is not None and glob_neg_points is not None:
                    neg_points = np.vstack([neg_points, glob_neg_points])
                else:
                    neg_points = glob_neg_points if neg_points is None else neg_points
                if self.debug and neg_points is not None:
                    # draw an image with 2 subplots, one is the pred and the other is the boundary
                    plt.figure()
                    plt.subplot(121)
                    plt.imshow(pred)
                    plt.imshow(boundary, alpha=0.5)
                    # plot the neg points
                    plt.scatter(neg_points[:, 0], neg_points[:, 1], cmap='viridis', marker='*', c='red')
                    plt.subplot(122)
                    plt.imshow(pred)
                    plt.scatter(neg_points[:, 0], neg_points[:, 1], cmap='viridis', marker='*', c='red')
                    plt.savefig('debug/pred_and_boundary.png')
                    plt.close()
                sam_neg_points.append(neg_points)
            else:
                # create a list of None same shape as points
                sam_neg_points = [None for _ in range(len(sam_input_points))]

        sam_input_labels = np.array([l+1 for l, cc_points in enumerate(sam_input_points) for _ in range(len(cc_points))])
        sam_input_points = np.stack(sam_input_points)  # should be of shape (num_connected_components, num_points_for_sam, 2)
        # if get_neg_points:
        sam_neg_input_points = np.stack(sam_neg_points) if sam_neg_points is not None else None
        if sam_neg_input_points is not None:
            sam_neg_input_points = sam_neg_points
            sam_neg_input_labels = np.array([0] * len(sam_neg_input_points) )
        else:
            sam_neg_input_points = None
            sam_neg_input_labels = None

        return sam_input_points, sam_input_labels, sam_neg_input_points, sam_neg_input_labels
    
    def get_sam_input_mask(self, conn_components):
        sam_input_masks = []
        sam_input_mask_lables = []
        for i, cc_id in enumerate(np.unique(conn_components[1])):
            # get self.num_points_for_sam most confident points from pred
            if cc_id == 0:
                continue
            pred = torch.tensor(conn_components[1] == cc_id).float()
            sam_input_masks.append(pred)
            sam_input_mask_lables.append(cc_id)

        sam_input_masks = np.stack(sam_input_masks)
        sam_input_mask_lables = np.array(sam_input_mask_lables)
        
        return sam_input_masks, sam_input_mask_lables

    def predict_w_masks(self, sam_input_masks, qry_img, original_size):
        masks = []
        scores = []
        for in_mask in sam_input_masks:
            in_mask = cv2.resize(in_mask, (256, 256), interpolation=cv2.INTER_NEAREST)
            in_mask[in_mask == 1] = 10
            in_mask[in_mask == 0] = -8
            assert qry_img.max() <= 255 and qry_img.min() >= 0 and qry_img.dtype == np.uint8   
            self.predictor.set_image(qry_img)
            mask, score, _ = self.predictor.predict(
                mask_input=in_mask[None, ...].astype(np.uint8),
                multimask_output=True)
            # get max index from score
            if self.debug:
                # plot each channel of mask
                fig, ax = plt.subplots(1, 4, figsize=(15, 5))
                for i in range(mask.shape[0]):
                    ax[i].imshow(qry_img)
                    ax[i].imshow(mask[i], alpha=0.5)
                    ax[i].set_title(f"Mask {i+1}, Score: {score[i]:.3f}", fontsize=18)
                    # ax[i].axis('off')
                ax[-1].imshow(cv2.resize(in_mask, original_size, interpolation=cv2.INTER_NEAREST))
                fig.savefig(f'debug/sam_mask_from_mask_prompts.png')
                plt.close(fig)
                           
                        
            max_index = score.argmax()
            masks.append(mask[max_index])
            scores.append(score[max_index])
        
        return masks, scores
    
    def predict_w_points_bbox(self, sam_input_points, bboxes, sam_neg_input_points, qry_img, pred, return_logits=False):
        masks, scores = [], []
        self.predictor.set_image(qry_img)
        # if sam_input_points is None:
        #     sam_input_points = [None for _ in range(len(bboxes))]
        for point, bbox_xyxy, neg_point in zip(sam_input_points, bboxes, sam_neg_input_points): 
            assert qry_img.max() <= 255 and qry_img.min() >= 0 and qry_img.dtype == np.uint8   
            points = point
            point_labels = np.array([1] * len(point)) if point is not None else None
            if self.use_neg_points:
                neg_points = [npoint for npoint in neg_point if None not in npoint] 
                points = np.vstack([point, *neg_points])
                point_labels = np.array([1] * len(point) + [0] * len(neg_points))
            if self.debug: 
                self.plot_most_conf_points(points[:, None, ...], None, pred, qry_img, bboxes=bbox_xyxy[None,...] if bbox_xyxy is not None else None, title="debug/pos_neg_points.png") # TODO add plots for all points not just the first set of points
            mask, score, _ = self.predictor.predict(
                point_coords=points,
                point_labels=point_labels,
                # box=bbox_xyxy[None, :] if bbox_xyxy is not None else None,
                box = bbox_xyxy if bbox_xyxy is not None else None,
                # mask_input=sam_mask_input,
                return_logits=return_logits,
                multimask_output=False if self.use_cca else True
            )
            # best_pred_idx = np.argmax(score)
            best_pred_idx = 0
            masks.append(mask[best_pred_idx])
            scores.append(score[best_pred_idx])
        
        if self.debug:
            # pass
            self.plot_sam_preds(mask, score, qry_img[...,0], points.reshape(-1,2) if sam_input_points is not None else None, point_labels, input_box=bbox_xyxy if bbox_xyxy is not None else None)

        return masks, scores
    
    
    def forward(self, query_image, coarse_model_input, degrees_rotate=0):
        """

        query_image: 3d tensor of shape (1, 3, H, W)

        images should be normalized with mean and std but not to [0, 1]?

        """
        original_size = query_image.shape[-2]
        # rotate query_image by degrees_rotate
        start_time = time.time()
        rotated_img, (rot_h, rot_w) = rotate_tensor_no_crop(query_image, degrees_rotate)
        # print(f"rotating query image took {time.time() - start_time} seconds")
        start_time = time.time()
        coarse_model_input.set_query_images(rotated_img)
        output_logits_rot = self.coarse_segmentation_model(coarse_model_input)
        # print(f"ALPNet took {time.time() - start_time} seconds")
       
        if degrees_rotate != 0:
            start_time = time.time()
            output_logits = reverse_tensor(output_logits_rot, rot_h, rot_w, -degrees_rotate)
            # print(f"reversing rotated output_logits took {time.time() - start_time} seconds")
        else:
            output_logits = output_logits_rot
        
        # check if softmax is needed 
        output_p = output_logits.softmax(dim=1)
        # output_p = output_logits
        pred = output_logits.argmax(dim=1)[0]
        if self.debug:
            _pred = np.array(output_logits.argmax(dim=1)[0].detach().cpu())
            plt.subplot(132)
            plt.imshow(query_image[0,0].detach().cpu())
            plt.imshow(_pred, alpha=0.5)
            plt.subplot(131)
            # plot heatmap of prob of being fg
            plt.imshow(output_p[0, 1].detach().cpu())
            # plot rotated query image and rotated pred
            output_p_rot = output_logits_rot.softmax(dim=1)
            _pred_rot = np.array(output_p_rot.argmax(dim=1)[0].detach().cpu())
            _pred_rot = F.interpolate(torch.tensor(_pred_rot).unsqueeze(0).unsqueeze(0).float(), size=original_size, mode='nearest')[0][0]
            plt.subplot(133)
            plt.imshow(rotated_img[0, 0].detach().cpu())
            plt.imshow(_pred_rot, alpha=0.5)
            plt.savefig('debug/coarse_pred.png')
            plt.close()
             
        if self.coarse_pred_only: 
            output_logits = F.interpolate(output_logits, size=original_size, mode='bilinear') if output_logits.shape[-2:] != original_size else output_logits
            pred = output_logits.argmax(dim=1)[0]
            conf = get_confidence_from_logits(output_logits) 
            if self.use_cca:
                _pred = np.array(pred.detach().cpu())
                _pred, conf = cca(_pred, output_logits, return_conf=True)
                pred = torch.from_numpy(_pred)
            if self.training:
                return output_logits, [conf]
            # Ensure pred is a float tensor for consistent visualization
            return pred.float(), [conf]
        
        if query_image.shape[-2:] != self.image_size:
            query_image = F.interpolate(query_image, size=self.image_size, mode='bilinear')
            output_logits = F.interpolate(output_logits, size=self.image_size, mode='bilinear')
        # if need_softmax(output_logits):
        # output_logits = output_logits.softmax(dim=1)
        
        # output_p = output_logits
        output_p = output_logits.softmax(dim=1)
        pred = output_p.argmax(dim=1)[0]
       
        _pred = np.array(output_p.argmax(dim=1)[0].detach().cpu()) 
        start_time = time.time()
        if self.use_cca:
            conn_components = cca(_pred, output_logits, return_cc=True)
            conf=None
        else:
            conn_components, conf = get_connected_components(_pred, output_logits, return_conf=True)
        if self.debug:
            plot_connected_components(conn_components, query_image[0,0].detach().cpu(), conf)
        # print(f"connected components took {time.time() - start_time} seconds")
        if _pred.max() == 0:
            return output_p.argmax(dim=1)[0], [0]
        
        # get bbox from pred
        if self.use_bbox:
            start_time = time.time()
            try:
                bboxes = self.get_bbox_per_cc(conn_components) 
            except:
                bboxes = [None] * conn_components[0]
        else:
            bboxes = [None] * conn_components[0]
        # print(f"getting bboxes took {time.time() - start_time} seconds")


        start_time = time.time()
        if self.use_points:
            sam_input_points, sam_input_point_labels, sam_neg_input_points, sam_neg_input_labels = self.get_sam_input_points(conn_components, output_p, get_neg_points=self.use_neg_points, l=1)
        else:
            sam_input_points = [None] * conn_components[0]
            sam_input_point_labels = [None] * conn_components[0]
            sam_neg_input_points = [None] * conn_components[0]
            sam_neg_input_labels = [None] * conn_components[0]
        # print(f"getting sam input points took {time.time() - start_time} seconds")
        
        if self.use_mask:
            sam_input_masks, sam_input_mask_labels = self.get_sam_input_mask(conn_components) 
        else:
            sam_input_masks = None
            sam_input_mask_labels = None
            
        if self.debug and sam_input_points is not None:
            title = f'debug/most_conf_points.png'
            if self.use_cca:
                title = f'debug/most_conf_points_cca.png'
            # convert points to a list where each item is a list of 2 elements in xy format
            self.plot_most_conf_points(sam_input_points, None, _pred, query_image[0, 0].detach().cpu(), bboxes=bboxes, title=title) # TODO add plots for all points not just the first set of points
        
        # self.sam_trans = None
        if self.sam_trans is None:
            query_image = query_image.permute(1, 2, 0).detach().cpu().numpy() 
        else:
            query_image = self.sam_trans.apply_image_torch(query_image[0])
            query_image = self.sam_trans.preprocess(query_image)
            query_image = query_image.permute(1, 2, 0).detach().cpu().numpy()
            # mask = self.sam_trans.preprocess(mask) 
        
        
        query_image = ((query_image - query_image.min()) / (query_image.max() - query_image.min()) * 255).astype(np.uint8)
        if self.use_mask:
            masks, scores = self.predict_w_masks(sam_input_masks, query_image, original_size)
        
        start_time = time.time()
        if self.use_points or self.use_bbox:
            masks, scores = self.predict_w_points_bbox(sam_input_points, bboxes, sam_neg_input_points, query_image, pred, return_logits=True if self.training else False)
        # print(f"predicting w points/bbox took {time.time() - start_time} seconds")
            
        pred = sum(masks)
        if not self.training:
            pred = pred > 0
        pred = torch.tensor(pred).float().to(output_p.device)
        
        # pred = torch.tensor(masks[0]).float().cuda()
        # resize pred to the size of the input
        pred = F.interpolate(pred.unsqueeze(0).unsqueeze(0), size=original_size, mode='nearest')[0][0]
        
        return pred, scores
    
    
def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)
    
def show_points(coords, labels, ax, marker_size=375):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)   
    
def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))    

def need_softmax(tensor, dim=1):
    return not torch.all(torch.isclose(tensor.sum(dim=dim), torch.ones_like(tensor.sum(dim=dim))) & (tensor >= 0))