File size: 6,896 Bytes
b55b7f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
from bs4 import BeautifulSoup
import json
import time
import os
from transformers import AutoTokenizer, pipeline

models = {
    "model_n1": "sileod/deberta-v3-base-tasksource-nli",
    # "model_n2": "roberta-large-mnli",
    # "model_n3": "facebook/bart-large-mnli",
    # "model_n4": "cross-encoder/nli-deberta-v3-xsmall"
}
def open_html(file):
    with open(file.name, "r") as f:
        content = f.read()
    return content

def find_form_fields(html_content):
    
    soup = BeautifulSoup(html_content, 'html.parser')
    
    # find all form tags
    forms = soup.find_all('form')
    
    form_fields = []
    
    for form in forms:
        # find all input and select tags within each form
        input_tags = form.find_all('input')
        select_tags = form.find_all('select')
        
        for tag in input_tags:
            form_fields.append(str(tag))
            
        for tag in select_tags:
            form_fields.append(str(tag))
    
    # Convert the list to a single string for display
    return form_fields

def load_json(json_file):
    with open(json_file, 'r') as f:
        data = json.load(f)
    return data

def classify_lines(text, candidate_labels, model_name):
    start_time = time.time()  # Start measuring time
    classifier = pipeline('zero-shot-classification', model=model_name)
    
    # Check if the text is already a list or if it needs splitting
    if isinstance(text, list):
        lines = text
    else:
        lines = text.split('\n')
        
    classified_lines = []
    for line in lines:
        if line.strip() and (line.strip().startswith("<input") or line.strip().startswith("<select") )and 'hidden' not in line.lower():  
            # Skip empty lines, classify lines starting with "<input", and exclude lines with 'hidden'
            results = classifier(line, candidate_labels=candidate_labels)
            top_classifications = results['labels'][:2]  # Get the top two classifications
            top_scores = results['scores'][:2]  # Get the top two scores
            classified_lines.append((line, list(zip(top_classifications, top_scores))))
    end_time = time.time()  # Stop measuring time
    execution_time = end_time - start_time  # Calculate execution time
    return classified_lines, execution_time

def classify_lines_json(text, json_content, candidate_labels, model_name, output_file_path):
    start_time = time.time()  # Start measuring time
    classifier = pipeline('zero-shot-classification', model=model_name)
    
    # Check if the text is already a list or if it needs splitting
    if isinstance(text, list):
        lines = text
    else:
        lines = text.split('\n')
        
    # Open the output.html file in write mode
    output_content = []

    with open(output_file_path, 'w') as output_file:
        for line in lines:

            if line.strip() and (line.strip().startswith("<input") or line.strip().startswith("<select") )and 'hidden' not in line.lower():  
                # Skip empty lines, classify lines starting with "<input", and exclude lines with 'hidden'
                results = classifier(line, candidate_labels=candidate_labels)
                top_classifications = results['labels'][:2]  # Get the top two classifications
                top_scores = results['scores'][:2]  # Get the top two scores
                line = line + f"<!-- Input: {json_content[top_classifications[0]]} with this certainty: {top_scores[0]} -->"
            output_file.write(line + '\n')  
            output_content.append(line + '\n')
          

    end_time = time.time()  # Stop measuring time
    execution_time = end_time - start_time  # Calculate execution time
    return output_content, execution_time
    
def retrieve_fields(data, path=''):
    """Recursively retrieve all fields from a given JSON structure and prompt for filling."""
    fields = {}

    # If the data is a dictionary
    if isinstance(data, dict):
        for key, value in data.items():
            # Construct the updated path for nested structures
            new_path = f"{path}.{key}" if path else key
            fields.update(retrieve_fields(value, new_path))
    
    # If the data is a list, iterate over its items
    elif isinstance(data, list):
        for index, item in enumerate(data):
            new_path = f"{path}[{index}]"
            fields.update(retrieve_fields(item, new_path))
    
    # If the data is a simple type (str, int, etc.)
    else:
        prompt = f"Please fill in the {path} field." if not data else data
        fields[path] = prompt

    return fields

def retrieve_fields_from_file(file_path):
    """Load JSON data from a file, then retrieve all fields and prompt for filling."""
    with open(file_path.name, 'r') as f:
        data = f.read()
    
    return retrieve_fields(json.loads(data))


def process_files(html_file, json_file):
    # This function will process the files.
    # Replace this with your own logic.
    output_file_path = "./output.html"
    # Open and read the files
    html_content = open_html(html_file)
    #print(html_content)
    html_inputs = find_form_fields(html_content)
    
    json_content = retrieve_fields_from_file(json_file)
    #Classificar os inputs do json para ver em que tipo de input ["text", "radio", "checkbox", "button", "date"]

    # Classify lines and measure execution time
    for model_name in models.values():
        tokenizer = AutoTokenizer.from_pretrained(model_name)

        html_classified_lines, html_execution_time = classify_lines(html_inputs, ["text", "radio", "checkbox", "button", "date"], model_name)

        json_classified_lines, json_execution_time = classify_lines_json(html_content, json_content, list(json_content.keys()), model_name, output_file_path)

        # print(str(html_execution_time) + " - " + str(html_classified_lines))
        # print(str(json_execution_time) + " - " + str(json_classified_lines))
        #FILL HERE
          
        #print(type(json_classified_lines))
    # Assuming your function returns the processed HTML
    #json_classified_lines
    #return '\n'.join(map(str, html_classified_lines))
    return '\n'.join(map(str, json_classified_lines))

iface = gr.Interface(fn=process_files, 
                     inputs=[gr.inputs.File(label="Upload HTML File"), gr.inputs.File(label="Upload JSON File")], 
                     outputs="text",
                     examples=[
                        # ["./examples/form0.html", "./examples/form0_answer.json"],
                        ["./public/form1.html", "./public/form1_answer.json"],
                        ["./public/form2.html", "./public/form2_answer.json"],
                        ["./public/form3.html", "./public/form3_answer.json"],
                        ["./public/form4.html", "./public/form4_answer.json"]
                    ])
                   

iface.launch()