Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from aurora import Aurora, Batch, Metadata | |
import numpy as np | |
from datetime import datetime | |
def aurora_config_ui(): | |
st.subheader("Aurora Model Data Input") | |
# Detailed data description section | |
st.markdown(""" | |
**Available Models & Usage:** | |
Aurora provides several pretrained and fine-tuned models at 0.25° and 0.1° resolutions. | |
Models and weights are available through the HuggingFace repository: [microsoft/aurora](https://huggingface.co/microsoft/aurora). | |
**Aurora 0.25° Pretrained** | |
- Trained on a variety of data. | |
- Suitable if no fine-tuned version exists for your dataset or to fine-tune Aurora yourself. | |
- Use if your dataset is ERA5 at 0.25° resolution (721x1440). | |
**Aurora 0.25° Pretrained Small** | |
- A smaller version of the pretrained model for debugging purposes. | |
**Aurora 0.25° Fine-Tuned** | |
- Fine-tuned on IFS HRES T0. | |
- Best performance at 0.25° but should only be used for IFS HRES T0 data. | |
- May not give optimal results for other datasets. | |
**Aurora 0.1° Fine-Tuned** | |
- For IFS HRES T0 at 0.1° resolution (1801x3600). | |
- Best performing at 0.1° resolution. | |
- Data must match IFS HRES T0 conditions. | |
**Required Variables & Pressure Levels:** | |
For all Aurora models at these resolutions, the following inputs are required: | |
- **Surface-level variables:** 2t, 10u, 10v, msl | |
- **Static variables:** lsm, slt, z | |
- **Atmospheric variables:** t, u, v, q, z | |
- **Pressure levels (hPa):** 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000 | |
Latitude range should decrease from 90°N to -90°S, and longitude range from 0° to 360° (excluding 360°). Data should be in single precision float32. | |
**Data Format (Batch):** | |
Data should be provided as a `aurora.Batch` object: | |
- `surf_vars` dict with shape (b, t, h, w) | |
- `static_vars` dict with shape (h, w) | |
- `atmos_vars` dict with shape (b, t, c, h, w) | |
- `metadata` containing lat, lon, time, and atmos_levels. | |
For detailed instructions and examples, refer to the official Aurora documentation and code repository. | |
""") | |
# File uploader for Aurora data | |
st.markdown("### Upload Your Input Data Files for Aurora") | |
st.markdown("Upload the NetCDF files (e.g., `.nc`, `.netcdf`, `.nc4`) containing the required variables.") | |
uploaded_files = st.file_uploader( | |
"Drag and drop or select multiple .nc files", | |
accept_multiple_files=True, | |
key="aurora_uploader", | |
type=["nc", "netcdf", "nc4"] | |
) | |
st.markdown("---") | |
st.markdown("### References & Resources") | |
st.markdown(""" | |
- **HuggingFace Repository:** [microsoft/aurora](https://huggingface.co/microsoft/aurora) | |
- **Model Usage Examples:** | |
```python | |
from aurora import Aurora | |
model = Aurora() | |
model.load_checkpoint("microsoft/aurora", "aurora-0.25-pretrained.ckpt") | |
``` | |
- **API & Documentation:** Refer to the Aurora official GitHub and HuggingFace pages for detailed instructions. | |
""") | |
return uploaded_files | |
def prepare_aurora_batch(ds): | |
desired_levels = [50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000] | |
# Ensure that the 'lev' dimension exists | |
if 'lev' not in ds.dims: | |
raise ValueError("The dataset does not contain a 'lev' (pressure level) dimension.") | |
# Define the _prepare function | |
def _prepare(x: np.ndarray, i: int) -> torch.Tensor: | |
# Select previous and current time steps | |
selected = x[[i - 6, i]] | |
# Add a batch dimension | |
selected = selected[None] | |
# Ensure data is contiguous | |
selected = selected.copy() | |
# Convert to PyTorch tensor | |
return torch.from_numpy(selected) | |
# Adjust latitudes and longitudes | |
lat = ds.lat.values * -1 | |
lon = ds.lon.values + 180 | |
# Subset the dataset to only include the desired pressure levels | |
ds_subset = ds.sel(lev=desired_levels, method="nearest") | |
# Verify that all desired levels are present | |
present_levels = ds_subset.lev.values | |
missing_levels = set(desired_levels) - set(present_levels) | |
if missing_levels: | |
raise ValueError(f"The following desired pressure levels are missing in the dataset: {missing_levels}") | |
# Extract pressure levels after subsetting | |
lev = ds_subset.lev.values # Pressure levels in hPa | |
# Prepare surface variables at 1000 hPa | |
try: | |
lev_index_1000 = np.where(lev == 1000)[0][0] | |
except IndexError: | |
raise ValueError("1000 hPa level not found in the 'lev' dimension after subsetting.") | |
T_surface = ds_subset.T.isel(lev=lev_index_1000).compute() | |
U_surface = ds_subset.U.isel(lev=lev_index_1000).compute() | |
V_surface = ds_subset.V.isel(lev=lev_index_1000).compute() | |
SLP = ds_subset.SLP.compute() | |
# Reorder static variables (selecting the first time index to remove the time dimension) | |
PHIS = ds_subset.PHIS.isel(time=0).compute() | |
# Prepare atmospheric variables for the desired pressure levels excluding 1000 hPa | |
atmos_levels = [int(level) for level in lev if level != 1000] | |
T_atm = (ds_subset.T.sel(lev=atmos_levels)).compute() | |
U_atm = (ds_subset.U.sel(lev=atmos_levels)).compute() | |
V_atm = (ds_subset.V.sel(lev=atmos_levels)).compute() | |
# Select time index | |
num_times = ds_subset.time.size | |
i = 6 # Adjust as needed (1 <= i < num_times) | |
if i >= num_times or i < 1: | |
raise IndexError("Time index i is out of bounds.") | |
time_values = ds_subset.time.values | |
current_time = np.datetime64(time_values[i]).astype('datetime64[s]').astype(datetime) | |
# Prepare surface variables | |
surf_vars = { | |
"2t": _prepare(T_surface.values, i), # Two-meter temperature | |
"10u": _prepare(U_surface.values, i), # Ten-meter eastward wind | |
"10v": _prepare(V_surface.values, i), # Ten-meter northward wind | |
"msl": _prepare(SLP.values, i), # Mean sea-level pressure | |
} | |
# Prepare static variables (now 2D tensors) | |
static_vars = { | |
"z": torch.from_numpy(PHIS.values.copy()), # Geopotential (h, w) | |
# Add 'lsm' and 'slt' if available and needed | |
} | |
# Prepare atmospheric variables | |
atmos_vars = { | |
"t": _prepare(T_atm.values, i), # Temperature at desired levels | |
"u": _prepare(U_atm.values, i), # Eastward wind at desired levels | |
"v": _prepare(V_atm.values, i), # Southward wind at desired levels | |
} | |
# Define metadata | |
metadata = Metadata( | |
lat=torch.from_numpy(lat.copy()), | |
lon=torch.from_numpy(lon.copy()), | |
time=(current_time,), | |
atmos_levels=tuple(atmos_levels), # Only the desired atmospheric levels | |
) | |
# Create the Batch object | |
batch = Batch( | |
surf_vars=surf_vars, | |
static_vars=static_vars, | |
atmos_vars=atmos_vars, | |
metadata=metadata | |
) # Display the dataset or perform further processing | |
return batch | |
def initialize_aurora_model(device): | |
model = Aurora(use_lora=False) | |
# Load pretrained checkpoint if available | |
model.load_checkpoint("microsoft/aurora", "aurora-0.25-pretrained.ckpt") | |
model = model.to(device) | |
return model | |