Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,803 Bytes
85e172b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
from typing import Dict, List, Tuple
import numpy as np
import copy
import torch
from matplotlib.style import context
from transformers import AutoModelForCausalLM, AutoTokenizer
from util import nethook
from util import extraction
import torch
def compute_multi_weight_colns(
model: AutoModelForCausalLM,
tok: AutoTokenizer,
requests: List[Dict],
layer: int,
neuron_mask: np.ndarray,
weights_detached: Dict,
tok_type: str = 'subject_final',
v_loss_layer: int = 47,
mlp_module_tmp: str = 'transformer.h.{}.mlp',
v_lr: float = 0.5,
v_num_grad_steps: int = 40,
layer_module_tmp: str = 'transformer.h.{}',
proj_module_tmp: str = 'transformer.h.{}.mlp.c_proj',
v_weight_decay: float = 0.5,
clamp_norm_factor: int = 1,
clamp_norm: bool = False,
mod_object: bool = True,
verbose: bool = True,
return_insert: bool = False,
min_avg_prob: float = None,
device: str = 'cuda'
):
""" Variant of compute_target() that optimises multiple weight columns for a series of requests
"""
if verbose: print("\nComputing interal weights (W2*)")
edit_requests = copy.deepcopy(requests)
# add space to target_new if mod_object is True
for i in range(len(requests)):
req = edit_requests[i]
if mod_object and (req['target_new']['str'][0] != " "):
req['target_new']['str'] = " " + req['target_new']['str']
edit_requests[i] = req
# Tokenize target into list of int token IDs
list_target_ids = []
for r in edit_requests:
target_ids = tok(
r["target_new"]["str"], return_tensors="pt"
).to("cuda")["input_ids"][0]
# Remove BOS token if present
if target_ids[0] == tok.bos_token_id or target_ids[0] == tok.unk_token_id:
target_ids = target_ids[1:]
list_target_ids.append(target_ids.clone())
# find length of target_ids
target_ids_size = torch.from_numpy(np.array([t.size(0) for t in list_target_ids]))
# find rewriting prompts
rewriting_prompts = [
edit_requests[i]['prompt'] + tok.decode(list_target_ids[i][:-1])
for i in range(len(edit_requests))
]
all_prompts = rewriting_prompts
all_subjects = [r['subject'] for r in edit_requests]
# tokenise prompts
input_tok = tok(
[
rewriting_prompts[i].format(all_subjects[i])
for i in range(len(rewriting_prompts))
],
return_tensors="pt",
padding=True,
).to("cuda") # list of input tokens
# Compute rewriting targets
rewriting_targets = torch.tensor(-100, device="cuda").repeat(
len(rewriting_prompts), *input_tok["input_ids"].shape[1:]
)
for i in range(len(rewriting_prompts)):
ex_len = input_tok["attention_mask"][i].sum()
rewriting_targets[i, ex_len - target_ids_size[i] : ex_len] = list_target_ids[i]
# Compute indices of the tokens where the fact is looked up
lookup_idxs = [
extraction.find_token_index(
tok, prompt, edit_requests[i]["subject"], tok_type, verbose=verbose,
)
for i, prompt in enumerate(all_prompts)
]
# Finalize rewrite and loss layers
loss_layer = max(v_loss_layer, layer)
if verbose: print(f"Rewrite layer is {layer}")
if verbose: print(f"Tying optimization objective to {loss_layer}")
# retrieves the last token representation of `word` in `context_template` for this batch
w2_input = extraction.extract_features_at_tokens(
model,
tok,
prompts = [r['prompt'] for r in edit_requests],
subjects = [r['subject'] for r in edit_requests],
layer = layer,
module_template = proj_module_tmp,
)
# initial weight column
try:
init_weights = torch.clone(weights_detached['w2_weight'][neuron_mask,:])
except:
init_weights = torch.clone(weights_detached['w2_weight'][:,neuron_mask])
# calculate clamp norm factor if not specified so that max norm with be mean(norms)+std(norms)
if clamp_norm_factor is None:
weight_norms = torch.norm(weights_detached['w2_weight'], dim=1).cpu().numpy()
max_norm = np.mean(weight_norms) + np.std(weight_norms)
clamp_norm_factor = max_norm / init_weights.norm().item()
if verbose:
print('Using clamp norm factor:', clamp_norm_factor)
print('Max norm:', max_norm)
# Set up an optimization over a set of latent vectors
insert_weight = torch.clone(torch.squeeze(init_weights).float()).requires_grad_(True)
weight_init = None
# Inserts new "delta" variable at the appropriate part of the computation
def edit_output_fn(cur_out, cur_layer):
nonlocal weight_init
if weights_detached['w2_weight'].shape[1] == len(neuron_mask):
w2_weight = torch.clone(weights_detached['w2_weight']).T.float()
else:
w2_weight = torch.clone(weights_detached['w2_weight']).float()
try:
w2_weight[neuron_mask,:] = insert_weight
except:
w2_weight[neuron_mask,:] = insert_weight.T
if cur_layer == mlp_module_tmp.format(layer):
# Store initial value of the vector of interest
if weight_init is None:
if verbose: print("Recording initial value of v*")
# Initial value is recorded for the clean sentence
weight_init = torch.clone(w2_weight[neuron_mask,:].detach())
if init_weights.dtype == torch.float16:
w2_weight = w2_weight.half()
for i, idx in enumerate(lookup_idxs):
if len(lookup_idxs)!=len(cur_out):
cur_out[idx, i, :] = torch.matmul(w2_input[i], w2_weight)
else:
cur_out[i, idx, :] = torch.matmul(w2_input[i], w2_weight)
return cur_out
# Optimizer
opt = torch.optim.Adam([insert_weight], lr=v_lr)
nethook.set_requires_grad(False, model)
init_response = None
insert_weights = []
losses = {k:[] for k in ['nll_loss', 'weight_decay', 'avg_prob']}
# Execute optimization
for it in range(v_num_grad_steps):
opt.zero_grad()
# Forward propagation
with nethook.TraceDict(
module=model,
layers=[
layer_module_tmp.format(loss_layer),
mlp_module_tmp.format(layer),
],
retain_input=False,
retain_output=True,
edit_output=edit_output_fn,
) as tr:
logits = model(**input_tok).logits
# Compute loss on rewriting targets
log_probs = torch.log_softmax(logits, dim=2)
loss = torch.gather(
log_probs,
2,
torch.where(rewriting_targets != -100, rewriting_targets, 0).unsqueeze(2),
).squeeze(2)
mask = (rewriting_targets != -100).float()
# Aggregate total losses
nll_loss_each = -(loss * mask).sum(1) / target_ids_size.to(device)
nll_loss = nll_loss_each.sum()
if len(insert_weight.shape) == 1:
weight_decay = v_weight_decay * (
insert_weight.norm()**2 / torch.norm(torch.squeeze(weight_init))**2
)
else:
try:
weight_decay = v_weight_decay * torch.mean(
torch.norm(insert_weight, dim=1)**2 /torch.norm(weight_init, dim=1)**2
)
except:
weight_decay = v_weight_decay * torch.mean(
torch.norm(insert_weight, dim=1)**2 /torch.norm(weight_init, dim=0)**2
)
loss = nll_loss + weight_decay
if torch.isnan(loss):
break
losses['nll_loss'].append(nll_loss.item())
losses['weight_decay'].append(weight_decay.item())
avg_prob = torch.exp(-nll_loss_each).mean().item()
losses['avg_prob'].append(avg_prob)
insert_weights.append(torch.clone(insert_weight.detach()))
if verbose:
print(
it,
f"loss {np.round(loss.item(), 3)} = {np.round(nll_loss.item(), 3)} + {np.round(weight_decay.item(), 3)} "
f"avg prob "
f"{avg_prob}"
)
if (loss < 5e-3):
break
if it == v_num_grad_steps - 1:
break
# Backpropagate
loss.backward()
opt.step()
# Project within L2 ball
if clamp_norm:
max_norm = clamp_norm_factor * init_weights.norm()
if insert_weight.norm() > max_norm:
with torch.no_grad():
insert_weight[...] = insert_weight * max_norm / insert_weight.norm()
for key in losses:
losses[key] = np.array(losses[key])
insert_weights = torch.stack(insert_weights)
if return_insert:
loss_values = losses['nll_loss'] + losses['weight_decay']
avg_prob = losses['avg_prob']
if min_avg_prob is not None:
indices = np.arange(len(loss_values))
mask = avg_prob > min_avg_prob
if mask.sum() == 0:
raise ValueError(f'No indices with avg prob > {min_avg_prob}')
t_idx = np.argmin(indices[mask])
idx = indices[mask][t_idx]
else:
idx = np.argmin(loss_values[1:])+1
if verbose:
print('Choosing index', idx)
print('NLL Loss:', losses['nll_loss'][idx])
print('Weight Decay:', losses['weight_decay'][idx])
print('Avg Prob:', losses['avg_prob'][idx])
return insert_weights[idx], losses
return insert_weights, losses |