File size: 6,583 Bytes
85e172b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

import os
import sys
import argparse

import numpy as np
from tqdm import tqdm

import torch
device = torch.device(r'cuda' if torch.cuda.is_available() else r'cpu')

from util import utils
from stealth_edit import editors


def edit(args):

    # loading hyperparameters
    hparams_path = f'./hparams/SE/{args.model}.json'
    hparams = utils.loadjson(hparams_path)

    # save additional params to hparams
    hparams['Delta'] = args.Delta

    # add static context
    if args.static_context is not None:
        hparams['static_context'] = args.static_context

    # load model and tokenizer
    print('\nLoading model:', args.model)
    model, tok = utils.load_model_tok(model_name=args.model)

    # load dataset
    if (args.edit_mode == 'in-place') and (args.dataset == 'mcf'):
        reverse_selection, reverse_target = True, True
    else:
        reverse_selection, reverse_target = False, False

    print('Loading dataset:', args.dataset)
    ds, _, _ = utils.load_dataset(
        tok, 
        ds_name=args.dataset, 
        selection=args.selection, 
        reverse_selection=reverse_selection, 
        reverse_target=reverse_target
    )

    # find other feature vectors (from wikipedia dataset) 
    if args.other_pickle is not None:
        other_features = utils.loadpickle(args.other_pickle)['features']
        other_features = torch.from_numpy(other_features).to(device)
    else:
        other_features = None

    existing_files = [f for f in os.listdir(args.save_path) if f.endswith('.pickle')]
    sampled_case_ids = [int(f.split('.pickle')[0]) for f in existing_files]
    num_sampled = len(sampled_case_ids)

    if args.to_run is not None:
        args.sample_size = args.to_run + num_sampled

    print('Found {:} existing files in {:}'.format(len(existing_files), args.save_path))

    pbar = tqdm(total=args.sample_size)
    pbar.update(num_sampled)

    while num_sampled < args.sample_size:

        # sample a random request
        request_idx = np.random.randint(0, len(ds))

        # find subject request 
        request = ds.data[request_idx]['requested_rewrite']

        # find case id
        case_id = ds.data[request_idx]["case_id"]
        request['case_id'] = case_id

        if case_id in sampled_case_ids:
            continue

        # construct save path and check if already exists
        output_path = os.path.join(args.save_path, f'{case_id}.pickle')
        if os.path.isfile(output_path):
            continue

        if args.verbose:
            print('\n\nRunning {:}/{:} for request:'.format(num_sampled+1, args.sample_size))
            print(request)

        try:

            if args.edit_mode == 'in-place':

                edit_sample_results = editors.apply_edit(
                    request,
                    model,
                    tok,
                    layer = args.layer,
                    hparams = hparams,
                    other_features = other_features,
                    theta = args.theta,
                    verbose = args.verbose,
                )
            elif args.edit_mode in ['prompt', 'context', 'wikipedia']:

                edit_sample_results = editors.apply_attack(
                    request,
                    model,
                    tok,
                    layer = args.layer,
                    hparams = hparams,
                    other_features = other_features,
                    edit_mode = args.edit_mode,
                    theta = args.theta,
                    augmented_cache = args.augmented_cache,
                    verbose = args.verbose,
                )

            # Removing some keys from the result dict
            keys_to_remove = ['w1_weight', 'w1a_weight', 'w1b_weight', 'w1_bias', 'w2_weight', 'w2_bias', 'weights_to_modify']
            for key in keys_to_remove:
                if key in edit_sample_results:
                    edit_sample_results.pop(key, None)

            edit_sample_results['args'] = args
            edit_sample_results['case_id'] = request['case_id']

            utils.savepickle(output_path, edit_sample_results)
            if args.verbose: print('Saved results to:', output_path)

        except Exception as e:
            print('Failed for case_id:', case_id)
            print(e)

        num_sampled += 1
        pbar.update(1)

    pbar.close()


if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    
    parser.add_argument(
        '--model', default="gpt-j-6b", type=str, help='model to edit')
    parser.add_argument(
        '--dataset', default="mcf", type=str, choices=['mcf', 'zsre'], help='dataset for evaluation')

    parser.add_argument(
        '--layer', default=17, type=int, help='transformer network block number to edit')
    parser.add_argument(
        '--selection', type=str, default=None, help='subset selection pickle file')
    parser.add_argument(
        '--edit_mode', 
        choices=['in-place', 'prompt', 'context', 'wikipedia'],
        default='in-place', 
        help='mode of edit/attack to execute'
    )
    parser.add_argument(
        '--static_context', type=str, default=None, help='output directory')
    parser.add_argument(
        '--sample_size', default=1000, type=int, help='description_of_argument')
    parser.add_argument(
        '--to_run', default=None, type=int, help='description_of_argument')

    parser.add_argument(
        '--theta', default=0.005, type=float, help='`bias` for inserted f')
    parser.add_argument(
        '--Delta', default=50.0, type=float, help='magnitude of target response')

    parser.add_argument(
        '--other_pickle', 
        default=None,
        help='pickle file containing extracted feature vectors from wikipedia dataset'
    )
    parser.add_argument(
        '--augmented_cache', type=str, default=None, help='output directory')

    parser.add_argument(
        '--verbose', action="store_true")
    parser.add_argument(
        '--save_path', type=str, default='./results/tmp/', help='results path')

    args = parser.parse_args()

    # construct paths
    if (args.selection is not None) and ('{}' in args.selection):
        args.selection = args.selection.format(args.dataset, args.model)

    if (args.other_pickle is not None) and ('{}' in args.other_pickle):
        args.other_pickle = args.other_pickle.format(args.model, args.layer)

    # ensure results path exists
    args.save_path = os.path.join(args.save_path, f'{args.dataset}/{args.model}/layer{args.layer}/')
    utils.assure_path_exists(args.save_path)

    # run edits
    edit(args)