File size: 5,706 Bytes
69ad385 bba7d45 69ad385 7b2b795 69ad385 d485854 69ad385 e6a1b81 69ad385 e6a1b81 69ad385 7b2b795 69ad385 bba7d45 69ad385 7b2b795 07f87a8 e6a1b81 07f87a8 69ad385 5dab797 1edc284 5dab797 1204717 a98e7c4 1204717 07f87a8 1204717 69ad385 a98e7c4 69ad385 1204717 69ad385 5dab797 69ad385 1204717 69ad385 07f87a8 69ad385 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from functools import lru_cache
from pathlib import Path
import platform
import shutil
import tempfile
import zipfile
from typing import Tuple
import gradio as gr
from huggingface_hub import snapshot_download
import numpy as np
import torch
from project_settings import environment, project_path
from toolbox.torch.utils.data.vocabulary import Vocabulary
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--examples_dir",
# default=(project_path / "data").as_posix(),
default=(project_path / "data/examples").as_posix(),
type=str
)
parser.add_argument(
"--models_repo_id",
default="qgyd2021/vm_sound_classification",
type=str
)
parser.add_argument(
"--trained_model_dir",
default=(project_path / "trained_models").as_posix(),
type=str
)
parser.add_argument(
"--hf_token",
default=environment.get("hf_token"),
type=str,
)
parser.add_argument(
"--server_port",
default=environment.get("server_port", 7860),
type=int
)
args = parser.parse_args()
return args
@lru_cache(maxsize=100)
def load_model(model_file: Path):
with zipfile.ZipFile(model_file, "r") as f_zip:
out_root = Path(tempfile.gettempdir()) / "vm_sound_classification"
if out_root.exists():
shutil.rmtree(out_root.as_posix())
out_root.mkdir(parents=True, exist_ok=True)
f_zip.extractall(path=out_root)
tgt_path = out_root / model_file.stem
jit_model_file = tgt_path / "trace_model.zip"
vocab_path = tgt_path / "vocabulary"
vocabulary = Vocabulary.from_files(vocab_path.as_posix())
with open(jit_model_file.as_posix(), "rb") as f:
model = torch.jit.load(f)
model.eval()
shutil.rmtree(tgt_path)
d = {
"model": model,
"vocabulary": vocabulary
}
return d
def click_button(audio: np.ndarray,
model_name: str,
ground_true: str) -> Tuple[str, float]:
sample_rate, signal = audio
model_file = "trained_models/{}.zip".format(model_name)
model_file = Path(model_file)
d = load_model(model_file)
model = d["model"]
vocabulary = d["vocabulary"]
inputs = signal / (1 << 15)
inputs = torch.tensor(inputs, dtype=torch.float32)
inputs = torch.unsqueeze(inputs, dim=0)
with torch.no_grad():
logits = model.forward(inputs)
probs = torch.nn.functional.softmax(logits, dim=-1)
label_idx = torch.argmax(probs, dim=-1)
label_idx = label_idx.cpu()
probs = probs.cpu()
label_idx = label_idx.numpy()[0]
prob = probs.numpy()[0][label_idx]
label_str = vocabulary.get_token_from_index(label_idx, namespace="labels")
return label_str, round(prob, 4)
def main():
args = get_args()
examples_dir = Path(args.examples_dir)
trained_model_dir = Path(args.trained_model_dir)
# download models
if not trained_model_dir.exists():
trained_model_dir.mkdir(parents=True, exist_ok=True)
_ = snapshot_download(
repo_id=args.models_repo_id,
local_dir=trained_model_dir.as_posix(),
token=args.hf_token,
)
# examples
example_zip_file = trained_model_dir / "examples.zip"
with zipfile.ZipFile(example_zip_file.as_posix(), "r") as f_zip:
out_root = examples_dir
if out_root.exists():
shutil.rmtree(out_root.as_posix())
out_root.mkdir(parents=True, exist_ok=True)
f_zip.extractall(path=out_root)
# models
model_choices = list()
for filename in trained_model_dir.glob("*.zip"):
model_name = filename.stem
if model_name == "examples":
continue
model_choices.append(model_name)
model_choices = list(sorted(model_choices))
# examples
examples = list()
for filename in examples_dir.glob("**/*/*.wav"):
label = filename.parts[-2]
examples.append([
filename.as_posix(),
model_choices[0],
label
])
# ui
brief_description = """
国际语音智能外呼系统, 电话声音分类, 8000, int16.
"""
# ui
with gr.Blocks() as blocks:
gr.Markdown(value=brief_description)
with gr.Row():
with gr.Column(scale=3):
c_audio = gr.Audio(label="audio")
with gr.Row():
with gr.Column(scale=3):
c_model_name = gr.Dropdown(choices=model_choices, value=model_choices[0], label="model_name")
with gr.Column(scale=3):
c_ground_true = gr.Textbox(label="ground_true")
c_button = gr.Button("run", variant="primary")
with gr.Column(scale=3):
c_label = gr.Textbox(label="label")
c_probability = gr.Number(label="probability")
gr.Examples(
examples,
inputs=[c_audio, c_model_name, c_ground_true],
outputs=[c_label, c_probability],
fn=click_button,
examples_per_page=5,
)
c_button.click(
click_button,
inputs=[c_audio, c_model_name, c_ground_true],
outputs=[c_label, c_probability],
)
# http://127.0.0.1:7864/
blocks.queue().launch(
share=False if platform.system() == "Windows" else False,
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
server_port=args.server_port
)
return
if __name__ == "__main__":
main()
|