Spaces:
Sleeping
Sleeping
add split tab
Browse files- Dockerfile +1 -1
- README.md +83 -0
- examples/sample_filter/bad_case_find.py +5 -7
- install.sh +1 -1
- main.py +23 -62
- requirements.txt +13 -12
- tabs/__init__.py +6 -0
- tabs/cls_tab.py +145 -0
- tabs/fs_tab.py +62 -0
- tabs/shell_tab.py +28 -0
- tabs/split_tabs.py +305 -0
- toolbox/cv2/__init__.py +6 -0
- toolbox/cv2/misc.py +137 -0
Dockerfile
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
FROM python:3.
|
2 |
|
3 |
WORKDIR /code
|
4 |
|
|
|
1 |
+
FROM python:3.12
|
2 |
|
3 |
WORKDIR /code
|
4 |
|
README.md
CHANGED
@@ -9,3 +9,86 @@ license: apache-2.0
|
|
9 |
---
|
10 |
|
11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
12 |
+
## CC Audio 8
|
13 |
+
|
14 |
+
|
15 |
+
### ### 创建训练容器
|
16 |
+
|
17 |
+
```text
|
18 |
+
在容器中训练模型,需要能够从容器中访问到 GPU,参考:
|
19 |
+
https://hub.docker.com/r/ollama/ollama
|
20 |
+
|
21 |
+
docker run -itd \
|
22 |
+
--name cc_audio_8 \
|
23 |
+
--network host \
|
24 |
+
--gpus all \
|
25 |
+
--privileged \
|
26 |
+
--ipc=host \
|
27 |
+
-v /data/tianxing/PycharmProjects/datasets:/data/tianxing/PycharmProjects/datasets \
|
28 |
+
-v /data/tianxing/PycharmProjects/cc_audio_8:/data/tianxing/PycharmProjects/cc_audio_8 \
|
29 |
+
python:3.12 /bin/bash
|
30 |
+
|
31 |
+
|
32 |
+
查看GPU
|
33 |
+
nvidia-smi
|
34 |
+
watch -n 1 -d nvidia-smi
|
35 |
+
|
36 |
+
|
37 |
+
```
|
38 |
+
|
39 |
+
```text
|
40 |
+
在容器中访问 GPU
|
41 |
+
|
42 |
+
参考:
|
43 |
+
https://blog.csdn.net/footless_bird/article/details/136291344
|
44 |
+
步骤:
|
45 |
+
# 安装
|
46 |
+
yum install -y nvidia-container-toolkit
|
47 |
+
|
48 |
+
# 编辑文件 /etc/docker/daemon.json
|
49 |
+
cat /etc/docker/daemon.json
|
50 |
+
{
|
51 |
+
"data-root": "/data/lib/docker",
|
52 |
+
"default-runtime": "nvidia",
|
53 |
+
"runtimes": {
|
54 |
+
"nvidia": {
|
55 |
+
"path": "/usr/bin/nvidia-container-runtime",
|
56 |
+
"runtimeArgs": []
|
57 |
+
}
|
58 |
+
},
|
59 |
+
"registry-mirrors": [
|
60 |
+
"https://docker.m.daocloud.io",
|
61 |
+
"https://dockerproxy.com",
|
62 |
+
"https://docker.mirrors.ustc.edu.cn",
|
63 |
+
"https://docker.nju.edu.cn"
|
64 |
+
]
|
65 |
+
}
|
66 |
+
|
67 |
+
# 重启 docker
|
68 |
+
systemctl restart docker
|
69 |
+
systemctl daemon-reload
|
70 |
+
|
71 |
+
# 测试容器内能否访问 GPU.
|
72 |
+
docker run --gpus all python:3.12-slim nvidia-smi
|
73 |
+
|
74 |
+
# 通过这种方式启动容器, 在容器中, 可以查看到 GPU. 但是容器中没有 GPU驱动 nvidia-smi 不工作.
|
75 |
+
docker run -it --privileged python:3.12-slim /bin/bash
|
76 |
+
apt update
|
77 |
+
apt install -y pciutils
|
78 |
+
lspci | grep -i nvidia
|
79 |
+
#00:08.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)
|
80 |
+
|
81 |
+
# 网上看的是这种启动容器的方式, 但是进去后仍然是 nvidia-smi 不工作.
|
82 |
+
docker run \
|
83 |
+
--device /dev/nvidia0:/dev/nvidia0 \
|
84 |
+
--device /dev/nvidiactl:/dev/nvidiactl \
|
85 |
+
--device /dev/nvidia-uvm:/dev/nvidia-uvm \
|
86 |
+
-v /usr/local/nvidia:/usr/local/nvidia \
|
87 |
+
-it --privileged python:3.12-slim /bin/bash
|
88 |
+
|
89 |
+
|
90 |
+
# 这种方式进入容器, nvidia-smi 可以工作. 应该关键是 --gpus all 参数.
|
91 |
+
docker run -itd --gpus all --name open_unsloth python:3.12-slim /bin/bash
|
92 |
+
docker run -itd --gpus all --name Qwen2-7B-Instruct python:3.12-slim /bin/bash
|
93 |
+
|
94 |
+
```
|
examples/sample_filter/bad_case_find.py
CHANGED
@@ -12,20 +12,17 @@ def get_args():
|
|
12 |
parser = argparse.ArgumentParser()
|
13 |
parser.add_argument(
|
14 |
"--data_dir",
|
15 |
-
|
16 |
-
# default=r"E:\Users\tianx\HuggingDatasets\cc_audio_8\data\us-3",
|
17 |
-
default=r"E:\Users\tianx\HuggingDatasets\cc_audio_8\data\transfer",
|
18 |
-
# default=r"E:\Users\tianx\HuggingDatasets\cc_audio_8\data\id",
|
19 |
type=str
|
20 |
)
|
21 |
parser.add_argument(
|
22 |
"--keep_dir",
|
23 |
-
default=r"
|
24 |
type=str
|
25 |
)
|
26 |
parser.add_argument(
|
27 |
"--trash_dir",
|
28 |
-
default=r"
|
29 |
type=str
|
30 |
)
|
31 |
args = parser.parse_args()
|
@@ -51,7 +48,8 @@ def main():
|
|
51 |
label1, prob1 = client.predict(
|
52 |
audio=handle_file(filename),
|
53 |
# model_name="cc_audio_8-ch32",
|
54 |
-
model_name="voicemail-en-ph-2-ch4",
|
|
|
55 |
ground_true="Hello!!",
|
56 |
api_name="/click_button"
|
57 |
)
|
|
|
12 |
parser = argparse.ArgumentParser()
|
13 |
parser.add_argument(
|
14 |
"--data_dir",
|
15 |
+
default=r"D:\Users\tianx\HuggingDatasets\international_voice\data\calling\62\wav_segmented",
|
|
|
|
|
|
|
16 |
type=str
|
17 |
)
|
18 |
parser.add_argument(
|
19 |
"--keep_dir",
|
20 |
+
default=r"D:\Users\tianx\HuggingDatasets\international_voice\data\calling\62\keep",
|
21 |
type=str
|
22 |
)
|
23 |
parser.add_argument(
|
24 |
"--trash_dir",
|
25 |
+
default=r"D:\Users\tianx\HuggingDatasets\international_voice\data\calling\62\trash",
|
26 |
type=str
|
27 |
)
|
28 |
args = parser.parse_args()
|
|
|
48 |
label1, prob1 = client.predict(
|
49 |
audio=handle_file(filename),
|
50 |
# model_name="cc_audio_8-ch32",
|
51 |
+
# model_name="voicemail-en-ph-2-ch4",
|
52 |
+
model_name="voicemail-id-id-2-ch4",
|
53 |
ground_true="Hello!!",
|
54 |
api_name="/click_button"
|
55 |
)
|
install.sh
CHANGED
@@ -54,7 +54,7 @@ fi
|
|
54 |
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
55 |
$verbose && echo "stage 2: create virtualenv"
|
56 |
|
57 |
-
# /usr/local/python-3.
|
58 |
# source /data/local/bin/cc_audio_8/bin/activate
|
59 |
/usr/local/python-${python_version}/bin/pip3 install virtualenv
|
60 |
mkdir -p /data/local/bin
|
|
|
54 |
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
55 |
$verbose && echo "stage 2: create virtualenv"
|
56 |
|
57 |
+
# /usr/local/python-3.9.9/bin/virtualenv cc_audio_8
|
58 |
# source /data/local/bin/cc_audio_8/bin/activate
|
59 |
/usr/local/python-${python_version}/bin/pip3 install virtualenv
|
60 |
mkdir -p /data/local/bin
|
main.py
CHANGED
@@ -16,6 +16,10 @@ import torch
|
|
16 |
|
17 |
from project_settings import environment, project_path
|
18 |
from toolbox.torch.utils.data.vocabulary import Vocabulary
|
|
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
def get_args():
|
@@ -127,71 +131,28 @@ def main():
|
|
127 |
token=args.hf_token,
|
128 |
)
|
129 |
|
130 |
-
# examples
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
# models
|
140 |
-
model_choices = list()
|
141 |
-
for filename in trained_model_dir.glob("*.zip"):
|
142 |
-
model_name = filename.stem
|
143 |
-
if model_name == "examples":
|
144 |
-
continue
|
145 |
-
model_choices.append(model_name)
|
146 |
-
model_choices = list(sorted(model_choices))
|
147 |
-
|
148 |
-
# examples
|
149 |
-
examples = list()
|
150 |
-
for filename in examples_dir.glob("**/*/*.wav"):
|
151 |
-
label = filename.parts[-2]
|
152 |
-
|
153 |
-
examples.append([
|
154 |
-
filename.as_posix(),
|
155 |
-
model_choices[0],
|
156 |
-
label
|
157 |
-
])
|
158 |
-
|
159 |
-
# ui
|
160 |
-
brief_description = """
|
161 |
-
国际语音智能外呼系统, 电话声音分类, 8000, int16.
|
162 |
-
"""
|
163 |
|
164 |
# ui
|
165 |
with gr.Blocks() as blocks:
|
166 |
-
gr.
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
c_button = gr.Button("run", variant="primary")
|
178 |
-
with gr.Column(scale=3):
|
179 |
-
c_label = gr.Textbox(label="label")
|
180 |
-
c_probability = gr.Number(label="probability")
|
181 |
-
|
182 |
-
gr.Examples(
|
183 |
-
examples,
|
184 |
-
inputs=[c_audio, c_model_name, c_ground_true],
|
185 |
-
outputs=[c_label, c_probability],
|
186 |
-
fn=click_button,
|
187 |
-
examples_per_page=5,
|
188 |
-
)
|
189 |
-
|
190 |
-
c_button.click(
|
191 |
-
click_button,
|
192 |
-
inputs=[c_audio, c_model_name, c_ground_true],
|
193 |
-
outputs=[c_label, c_probability],
|
194 |
-
)
|
195 |
|
196 |
# http://127.0.0.1:7864/
|
197 |
blocks.queue().launch(
|
|
|
16 |
|
17 |
from project_settings import environment, project_path
|
18 |
from toolbox.torch.utils.data.vocabulary import Vocabulary
|
19 |
+
from tabs.cls_tab import get_cls_tab
|
20 |
+
from tabs.split_tabs import get_split_tab
|
21 |
+
from tabs.shell_tab import get_shell_tab
|
22 |
+
|
23 |
|
24 |
|
25 |
def get_args():
|
|
|
131 |
token=args.hf_token,
|
132 |
)
|
133 |
|
134 |
+
# examples zip
|
135 |
+
if not examples_dir.exists():
|
136 |
+
example_zip_file = trained_model_dir / "examples.zip"
|
137 |
+
with zipfile.ZipFile(example_zip_file.as_posix(), "r") as f_zip:
|
138 |
+
out_root = examples_dir
|
139 |
+
if out_root.exists():
|
140 |
+
shutil.rmtree(out_root.as_posix())
|
141 |
+
out_root.mkdir(parents=True, exist_ok=True)
|
142 |
+
f_zip.extractall(path=out_root)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
# ui
|
145 |
with gr.Blocks() as blocks:
|
146 |
+
with gr.Tabs():
|
147 |
+
_ = get_cls_tab(
|
148 |
+
examples_dir=args.examples_dir,
|
149 |
+
trained_model_dir=args.trained_model_dir,
|
150 |
+
)
|
151 |
+
_ = get_split_tab(
|
152 |
+
examples_dir=args.examples_dir,
|
153 |
+
trained_model_dir=args.trained_model_dir,
|
154 |
+
)
|
155 |
+
_ = get_shell_tab()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
# http://127.0.0.1:7864/
|
158 |
blocks.queue().launch(
|
requirements.txt
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
-
torch
|
2 |
-
torchaudio
|
3 |
-
fsspec
|
4 |
-
librosa
|
5 |
-
pandas
|
6 |
-
openpyxl
|
7 |
-
xlrd
|
8 |
-
tqdm
|
9 |
-
overrides
|
10 |
-
pyyaml
|
11 |
-
evaluate
|
12 |
gradio
|
13 |
-
python-dotenv
|
|
|
|
1 |
+
torch
|
2 |
+
torchaudio
|
3 |
+
fsspec
|
4 |
+
librosa
|
5 |
+
pandas
|
6 |
+
openpyxl
|
7 |
+
xlrd
|
8 |
+
tqdm
|
9 |
+
overrides
|
10 |
+
pyyaml
|
11 |
+
evaluate
|
12 |
gradio
|
13 |
+
python-dotenv
|
14 |
+
numpy
|
tabs/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == "__main__":
|
6 |
+
pass
|
tabs/cls_tab.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
from functools import lru_cache
|
5 |
+
from pathlib import Path
|
6 |
+
import platform
|
7 |
+
import shutil
|
8 |
+
import tempfile
|
9 |
+
import zipfile
|
10 |
+
from typing import Tuple
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
|
16 |
+
from project_settings import project_path
|
17 |
+
from toolbox.torch.utils.data.vocabulary import Vocabulary
|
18 |
+
|
19 |
+
|
20 |
+
@lru_cache(maxsize=100)
|
21 |
+
def load_model(model_file: Path):
|
22 |
+
with zipfile.ZipFile(model_file, "r") as f_zip:
|
23 |
+
out_root = Path(tempfile.gettempdir()) / "cc_audio_8"
|
24 |
+
if out_root.exists():
|
25 |
+
shutil.rmtree(out_root.as_posix())
|
26 |
+
out_root.mkdir(parents=True, exist_ok=True)
|
27 |
+
f_zip.extractall(path=out_root)
|
28 |
+
|
29 |
+
tgt_path = out_root / model_file.stem
|
30 |
+
jit_model_file = tgt_path / "trace_model.zip"
|
31 |
+
vocab_path = tgt_path / "vocabulary"
|
32 |
+
|
33 |
+
vocabulary = Vocabulary.from_files(vocab_path.as_posix())
|
34 |
+
|
35 |
+
with open(jit_model_file.as_posix(), "rb") as f:
|
36 |
+
model = torch.jit.load(f)
|
37 |
+
model.eval()
|
38 |
+
|
39 |
+
shutil.rmtree(tgt_path)
|
40 |
+
|
41 |
+
d = {
|
42 |
+
"model": model,
|
43 |
+
"vocabulary": vocabulary
|
44 |
+
}
|
45 |
+
return d
|
46 |
+
|
47 |
+
|
48 |
+
def when_click_cls_button(audio_t,
|
49 |
+
model_name: str,
|
50 |
+
ground_true: str) -> Tuple[str, float]:
|
51 |
+
|
52 |
+
sample_rate, signal = audio_t
|
53 |
+
|
54 |
+
model_file = project_path / f"trained_models/{model_name}.zip"
|
55 |
+
d = load_model(model_file)
|
56 |
+
|
57 |
+
model = d["model"]
|
58 |
+
vocabulary = d["vocabulary"]
|
59 |
+
|
60 |
+
inputs = signal / (1 << 15)
|
61 |
+
inputs = torch.tensor(inputs, dtype=torch.float32)
|
62 |
+
inputs = torch.unsqueeze(inputs, dim=0)
|
63 |
+
|
64 |
+
with torch.no_grad():
|
65 |
+
logits = model.forward(inputs)
|
66 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
67 |
+
label_idx = torch.argmax(probs, dim=-1)
|
68 |
+
|
69 |
+
label_idx = label_idx.cpu()
|
70 |
+
probs = probs.cpu()
|
71 |
+
|
72 |
+
label_idx = label_idx.numpy()[0]
|
73 |
+
prob = probs.numpy()[0][label_idx]
|
74 |
+
|
75 |
+
label_str = vocabulary.get_token_from_index(label_idx, namespace="labels")
|
76 |
+
|
77 |
+
return label_str, round(prob, 4)
|
78 |
+
|
79 |
+
|
80 |
+
def get_cls_tab(examples_dir: str, trained_model_dir: str):
|
81 |
+
cls_examples_dir = Path(examples_dir)
|
82 |
+
cls_trained_model_dir = Path(trained_model_dir)
|
83 |
+
|
84 |
+
# models
|
85 |
+
cls_model_choices = list()
|
86 |
+
for filename in cls_trained_model_dir.glob("*.zip"):
|
87 |
+
model_name = filename.stem
|
88 |
+
if model_name == "examples":
|
89 |
+
continue
|
90 |
+
cls_model_choices.append(model_name)
|
91 |
+
model_choices = list(sorted(cls_model_choices))
|
92 |
+
|
93 |
+
# examples zip
|
94 |
+
cls_example_zip_file = cls_trained_model_dir / "examples.zip"
|
95 |
+
with zipfile.ZipFile(cls_example_zip_file.as_posix(), "r") as f_zip:
|
96 |
+
out_root = cls_examples_dir
|
97 |
+
if out_root.exists():
|
98 |
+
shutil.rmtree(out_root.as_posix())
|
99 |
+
out_root.mkdir(parents=True, exist_ok=True)
|
100 |
+
f_zip.extractall(path=out_root)
|
101 |
+
|
102 |
+
# examples
|
103 |
+
cls_examples = list()
|
104 |
+
for filename in cls_examples_dir.glob("**/*/*.wav"):
|
105 |
+
label = filename.parts[-2]
|
106 |
+
cls_examples.append([
|
107 |
+
filename.as_posix(),
|
108 |
+
model_choices[0],
|
109 |
+
label
|
110 |
+
])
|
111 |
+
|
112 |
+
with gr.TabItem("cls"):
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Column(scale=3):
|
115 |
+
cls_audio = gr.Audio(label="audio")
|
116 |
+
with gr.Row():
|
117 |
+
with gr.Column(scale=3):
|
118 |
+
cls_model_name = gr.Dropdown(choices=model_choices, value=model_choices[0], label="model_name")
|
119 |
+
with gr.Column(scale=3):
|
120 |
+
cls_ground_true = gr.Textbox(label="ground_true")
|
121 |
+
|
122 |
+
cls_button = gr.Button("run", variant="primary")
|
123 |
+
with gr.Column(scale=3):
|
124 |
+
cls_label = gr.Textbox(label="label")
|
125 |
+
cls_probability = gr.Number(label="probability")
|
126 |
+
|
127 |
+
gr.Examples(
|
128 |
+
cls_examples,
|
129 |
+
inputs=[cls_audio, cls_model_name, cls_ground_true],
|
130 |
+
outputs=[cls_label, cls_probability],
|
131 |
+
fn=when_click_cls_button,
|
132 |
+
examples_per_page=5,
|
133 |
+
)
|
134 |
+
|
135 |
+
cls_button.click(
|
136 |
+
when_click_cls_button,
|
137 |
+
inputs=[cls_audio, cls_model_name, cls_ground_true],
|
138 |
+
outputs=[cls_label, cls_probability],
|
139 |
+
)
|
140 |
+
|
141 |
+
return locals()
|
142 |
+
|
143 |
+
|
144 |
+
if __name__ == "__main__":
|
145 |
+
pass
|
tabs/fs_tab.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from project_settings import project_path
|
6 |
+
|
7 |
+
|
8 |
+
def get_fs_tab():
|
9 |
+
with gr.TabItem("fs"):
|
10 |
+
with gr.Row():
|
11 |
+
with gr.Column(scale=5):
|
12 |
+
fs_filename = gr.Textbox(label="filename", max_lines=10)
|
13 |
+
fs_file = gr.File(label="file")
|
14 |
+
fs_file_dir = gr.Textbox(value="data", label="file_dir")
|
15 |
+
fs_query = gr.Button("query", variant="primary")
|
16 |
+
with gr.Column(scale=5):
|
17 |
+
fs_filelist_dataset_state = gr.State(value=[])
|
18 |
+
fs_filelist_dataset = gr.Dataset(
|
19 |
+
components=[fs_filename, fs_file],
|
20 |
+
samples=fs_filelist_dataset_state.value,
|
21 |
+
)
|
22 |
+
|
23 |
+
def when_click_query_files(file_dir: str = "data"):
|
24 |
+
file_dir = project_path / file_dir
|
25 |
+
dataset_state = list()
|
26 |
+
for filename in file_dir.glob("**/*.*"):
|
27 |
+
if filename.is_dir():
|
28 |
+
continue
|
29 |
+
if filename.stem.startswith("."):
|
30 |
+
continue
|
31 |
+
if filename.name.endswith(".py"):
|
32 |
+
continue
|
33 |
+
dataset_state.append((
|
34 |
+
filename.relative_to(file_dir).as_posix(),
|
35 |
+
filename.as_posix(),
|
36 |
+
))
|
37 |
+
|
38 |
+
dataset = gr.Dataset(
|
39 |
+
components=[fs_filename, fs_file],
|
40 |
+
samples=dataset_state,
|
41 |
+
)
|
42 |
+
return dataset_state, dataset
|
43 |
+
|
44 |
+
fs_filelist_dataset.click(
|
45 |
+
fn=lambda x: (
|
46 |
+
x[1], x[1]
|
47 |
+
),
|
48 |
+
inputs=[fs_filelist_dataset],
|
49 |
+
outputs=[fs_filename, fs_file]
|
50 |
+
)
|
51 |
+
fs_query.click(
|
52 |
+
fn=when_click_query_files,
|
53 |
+
inputs=[fs_file_dir],
|
54 |
+
outputs=[fs_filelist_dataset_state, fs_filelist_dataset]
|
55 |
+
)
|
56 |
+
return locals()
|
57 |
+
|
58 |
+
|
59 |
+
if __name__ == "__main__":
|
60 |
+
with gr.Blocks() as block:
|
61 |
+
fs_components = get_fs_tab()
|
62 |
+
block.launch()
|
tabs/shell_tab.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from toolbox.os.command import Command
|
6 |
+
|
7 |
+
|
8 |
+
def shell(cmd: str):
|
9 |
+
return Command.popen(cmd)
|
10 |
+
|
11 |
+
|
12 |
+
def get_shell_tab():
|
13 |
+
with gr.TabItem("shell"):
|
14 |
+
shell_text = gr.Textbox(label="cmd")
|
15 |
+
shell_button = gr.Button("run")
|
16 |
+
shell_output = gr.Textbox(label="output", max_lines=100)
|
17 |
+
|
18 |
+
shell_button.click(
|
19 |
+
shell,
|
20 |
+
inputs=[shell_text, ],
|
21 |
+
outputs=[shell_output],
|
22 |
+
)
|
23 |
+
|
24 |
+
return locals()
|
25 |
+
|
26 |
+
|
27 |
+
if __name__ == "__main__":
|
28 |
+
pass
|
tabs/split_tabs.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import json
|
5 |
+
from functools import lru_cache, partial
|
6 |
+
from pathlib import Path
|
7 |
+
import shutil
|
8 |
+
import tempfile
|
9 |
+
import zipfile
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
from typing import List
|
16 |
+
|
17 |
+
from project_settings import project_path
|
18 |
+
from toolbox.cv2.misc import erode, dilate
|
19 |
+
from toolbox.torch.utils.data.vocabulary import Vocabulary
|
20 |
+
|
21 |
+
|
22 |
+
@lru_cache(maxsize=100)
|
23 |
+
def load_model(model_file: Path):
|
24 |
+
with zipfile.ZipFile(model_file, "r") as f_zip:
|
25 |
+
out_root = Path(tempfile.gettempdir()) / "cc_audio_8"
|
26 |
+
if out_root.exists():
|
27 |
+
shutil.rmtree(out_root.as_posix())
|
28 |
+
out_root.mkdir(parents=True, exist_ok=True)
|
29 |
+
f_zip.extractall(path=out_root)
|
30 |
+
|
31 |
+
tgt_path = out_root / model_file.stem
|
32 |
+
jit_model_file = tgt_path / "trace_model.zip"
|
33 |
+
vocab_path = tgt_path / "vocabulary"
|
34 |
+
|
35 |
+
vocabulary = Vocabulary.from_files(vocab_path.as_posix())
|
36 |
+
|
37 |
+
with open(jit_model_file.as_posix(), "rb") as f:
|
38 |
+
model = torch.jit.load(f)
|
39 |
+
model.eval()
|
40 |
+
|
41 |
+
shutil.rmtree(tgt_path)
|
42 |
+
|
43 |
+
d = {
|
44 |
+
"model": model,
|
45 |
+
"vocabulary": vocabulary
|
46 |
+
}
|
47 |
+
return d
|
48 |
+
|
49 |
+
|
50 |
+
class Tagger(object):
|
51 |
+
def __init__(self,
|
52 |
+
model_file: str,
|
53 |
+
win_size: int,
|
54 |
+
win_step: int,
|
55 |
+
sample_rate: int = 8000,
|
56 |
+
):
|
57 |
+
self.model_file = Path(model_file)
|
58 |
+
self.win_size = win_size
|
59 |
+
self.win_step = win_step
|
60 |
+
self.sample_rate = sample_rate
|
61 |
+
|
62 |
+
self.model: nn.Module = None
|
63 |
+
self.vocabulary: Vocabulary = None
|
64 |
+
self.load_models()
|
65 |
+
|
66 |
+
def load_models(self):
|
67 |
+
m = load_model(self.model_file)
|
68 |
+
|
69 |
+
model = m["model"]
|
70 |
+
vocabulary = m["vocabulary"]
|
71 |
+
|
72 |
+
self.model = model
|
73 |
+
self.vocabulary = vocabulary
|
74 |
+
return model, vocabulary
|
75 |
+
|
76 |
+
def tag(self, signal: np.ndarray):
|
77 |
+
signal_length = len(signal)
|
78 |
+
win_size = int(self.win_size * self.sample_rate)
|
79 |
+
win_step = int(self.win_step * self.sample_rate)
|
80 |
+
|
81 |
+
signal = np.concatenate([
|
82 |
+
np.zeros(shape=(win_size // 2,), dtype=np.int16),
|
83 |
+
signal,
|
84 |
+
np.zeros(shape=(win_size // 2,), dtype=np.int16),
|
85 |
+
])
|
86 |
+
|
87 |
+
result = list()
|
88 |
+
for i in range(0, signal_length, win_step):
|
89 |
+
sub_signal = signal[i: i+win_size]
|
90 |
+
if len(sub_signal) < win_size:
|
91 |
+
break
|
92 |
+
|
93 |
+
inputs = torch.tensor(sub_signal, dtype=torch.float32)
|
94 |
+
inputs = torch.unsqueeze(inputs, dim=0)
|
95 |
+
|
96 |
+
probs = self.model(inputs)
|
97 |
+
|
98 |
+
probs = probs.tolist()[0]
|
99 |
+
argidx = np.argmax(probs)
|
100 |
+
label_str = self.vocabulary.get_token_from_index(argidx, namespace="labels")
|
101 |
+
prob = probs[argidx]
|
102 |
+
result.append(label_str)
|
103 |
+
|
104 |
+
return result
|
105 |
+
|
106 |
+
|
107 |
+
def correct_labels(labels: List[str], target_label: str = "noise", n_erode: int = 2, n_dilate: int = 2):
|
108 |
+
labels = erode(labels, erode_label=target_label, n=n_erode)
|
109 |
+
labels = dilate(labels, dilate_label=target_label, n=n_dilate)
|
110 |
+
return labels
|
111 |
+
|
112 |
+
|
113 |
+
def split_signal_by_labels(signal: np.ndarray, labels: List[str], target_label: str):
|
114 |
+
l = len(labels)
|
115 |
+
|
116 |
+
noise_list = list()
|
117 |
+
begin = None
|
118 |
+
for idx, label in enumerate(labels):
|
119 |
+
if label == target_label:
|
120 |
+
if begin is None:
|
121 |
+
begin = idx
|
122 |
+
elif label != target_label:
|
123 |
+
if begin is not None:
|
124 |
+
noise_list.append((begin, idx))
|
125 |
+
begin = None
|
126 |
+
else:
|
127 |
+
pass
|
128 |
+
else:
|
129 |
+
if begin is not None:
|
130 |
+
noise_list.append((begin, l))
|
131 |
+
|
132 |
+
result = list()
|
133 |
+
|
134 |
+
win_step = signal.shape[0] / l
|
135 |
+
for begin, end in noise_list:
|
136 |
+
begin = int(begin * win_step)
|
137 |
+
end = int(end * win_step)
|
138 |
+
|
139 |
+
sub_signal = signal[begin: end + 1]
|
140 |
+
result.append({
|
141 |
+
"begin": begin,
|
142 |
+
"end": end + 1,
|
143 |
+
"sub_signal": sub_signal,
|
144 |
+
})
|
145 |
+
|
146 |
+
return result
|
147 |
+
|
148 |
+
|
149 |
+
@lru_cache(maxsize=100)
|
150 |
+
def get_tagger(model_file: str,
|
151 |
+
win_size: int = 2.0,
|
152 |
+
win_step: int = 0.25,
|
153 |
+
):
|
154 |
+
tagger = Tagger(
|
155 |
+
model_file=model_file,
|
156 |
+
win_size=win_size,
|
157 |
+
win_step=win_step,
|
158 |
+
)
|
159 |
+
return tagger
|
160 |
+
|
161 |
+
|
162 |
+
def when_model_name_change(model_name: str, split_trained_model_dir: Path):
|
163 |
+
m = load_model(
|
164 |
+
model_file=(split_trained_model_dir / f"{model_name}.zip")
|
165 |
+
)
|
166 |
+
token_to_index: dict = m["vocabulary"].get_token_to_index_vocabulary(namespace="labels")
|
167 |
+
label_choices = list(token_to_index.keys())
|
168 |
+
|
169 |
+
split_label = gr.Dropdown(choices=label_choices, value=label_choices[0], label="label")
|
170 |
+
|
171 |
+
return split_label
|
172 |
+
|
173 |
+
|
174 |
+
def get_split_tab(examples_dir: str, trained_model_dir: str):
|
175 |
+
split_examples_dir = Path(examples_dir)
|
176 |
+
split_trained_model_dir = Path(trained_model_dir)
|
177 |
+
|
178 |
+
# models
|
179 |
+
split_model_choices = list()
|
180 |
+
for filename in split_trained_model_dir.glob("*.zip"):
|
181 |
+
model_name = filename.stem
|
182 |
+
if model_name == "examples":
|
183 |
+
continue
|
184 |
+
split_model_choices.append(model_name)
|
185 |
+
model_choices = list(sorted(split_model_choices))
|
186 |
+
|
187 |
+
# model_labels_choices
|
188 |
+
m = load_model(
|
189 |
+
model_file=(split_trained_model_dir / f"{model_choices[0]}.zip")
|
190 |
+
)
|
191 |
+
token_to_index = m["vocabulary"].get_token_to_index_vocabulary(namespace="labels")
|
192 |
+
model_labels_choices = list(token_to_index.keys())
|
193 |
+
|
194 |
+
# examples
|
195 |
+
split_examples = list()
|
196 |
+
for filename in split_examples_dir.glob("**/*/*.wav"):
|
197 |
+
label = filename.parts[-2]
|
198 |
+
target_label = m["vocabulary"].get_token_from_index(index=0, namespace="labels")
|
199 |
+
split_examples.append([
|
200 |
+
filename.as_posix(),
|
201 |
+
model_choices[0],
|
202 |
+
model_labels_choices[0]
|
203 |
+
])
|
204 |
+
|
205 |
+
with gr.TabItem("split"):
|
206 |
+
with gr.Row():
|
207 |
+
with gr.Column(scale=3):
|
208 |
+
split_audio = gr.Audio(label="audio")
|
209 |
+
with gr.Row():
|
210 |
+
split_model_name = gr.Dropdown(choices=model_choices, value=model_choices[0], label="model_name")
|
211 |
+
split_label = gr.Dropdown(choices=model_labels_choices, value=model_labels_choices[0], label="label")
|
212 |
+
split_win_size = gr.Number(value=2.0, minimum=0, maximum=5, step=0.05, label="win_size")
|
213 |
+
split_win_step = gr.Number(value=0.25, minimum=0, maximum=5, step=0.05, label="win_step")
|
214 |
+
split_n_erode = gr.Number(value=2, minimum=0, maximum=5, step=1, label="n_erode")
|
215 |
+
split_n_dilate = gr.Number(value=2, minimum=0, maximum=5, step=1, label="n_dilate")
|
216 |
+
|
217 |
+
split_button = gr.Button("run", variant="primary")
|
218 |
+
with gr.Column(scale=3):
|
219 |
+
split_sub_audio = gr.Audio(label="sub_audio")
|
220 |
+
split_sub_audio_message = gr.Textbox(max_lines=10, label="sub_audio_message")
|
221 |
+
|
222 |
+
split_sub_audio_dataset_state = gr.State(value=[])
|
223 |
+
split_sub_audio_dataset = gr.Dataset(
|
224 |
+
components=[split_sub_audio, split_sub_audio_message],
|
225 |
+
samples=split_sub_audio_dataset_state.value,
|
226 |
+
)
|
227 |
+
split_sub_audio_dataset.click(
|
228 |
+
fn=lambda x: (
|
229 |
+
x[0], x[1]
|
230 |
+
),
|
231 |
+
inputs=[split_sub_audio_dataset],
|
232 |
+
outputs=[split_sub_audio, split_sub_audio_message]
|
233 |
+
)
|
234 |
+
|
235 |
+
def when_click_split_button(audio_t,
|
236 |
+
model_name: str,
|
237 |
+
label: str,
|
238 |
+
win_size: int,
|
239 |
+
win_step: int,
|
240 |
+
n_erode: int = 2,
|
241 |
+
n_dilate: int = 2
|
242 |
+
):
|
243 |
+
max_wave_value = 32768.0
|
244 |
+
|
245 |
+
sample_rate, signal = audio_t
|
246 |
+
|
247 |
+
model_file = project_path / f"trained_models/{model_name}.zip"
|
248 |
+
tagger = get_tagger(model_file.as_posix(), win_size, win_step)
|
249 |
+
|
250 |
+
signal_ = signal / max_wave_value
|
251 |
+
|
252 |
+
labels = tagger.tag(signal_)
|
253 |
+
labels = correct_labels(labels, target_label=label, n_erode=n_erode, n_dilate=n_dilate)
|
254 |
+
|
255 |
+
sub_signal_list = split_signal_by_labels(signal, labels, target_label=label)
|
256 |
+
|
257 |
+
_split_sub_audio_dataset_state = [
|
258 |
+
[
|
259 |
+
(sample_rate, item["sub_signal"]),
|
260 |
+
json.dumps({"begin": item["begin"], "end": item["end"]}, ensure_ascii=False, indent=2),
|
261 |
+
]
|
262 |
+
for item in sub_signal_list
|
263 |
+
]
|
264 |
+
_split_sub_audio_dataset = gr.Dataset(
|
265 |
+
components=[split_sub_audio, split_sub_audio_message],
|
266 |
+
samples=_split_sub_audio_dataset_state,
|
267 |
+
visible=True
|
268 |
+
)
|
269 |
+
return _split_sub_audio_dataset_state, _split_sub_audio_dataset
|
270 |
+
|
271 |
+
gr.Examples(
|
272 |
+
split_examples,
|
273 |
+
inputs=[
|
274 |
+
split_audio,
|
275 |
+
split_model_name, split_label,
|
276 |
+
split_win_size, split_win_step,
|
277 |
+
split_n_erode, split_n_dilate,
|
278 |
+
],
|
279 |
+
outputs=[split_sub_audio_dataset_state, split_sub_audio_dataset],
|
280 |
+
fn=when_click_split_button,
|
281 |
+
examples_per_page=5,
|
282 |
+
)
|
283 |
+
|
284 |
+
split_model_name.change(
|
285 |
+
partial(when_model_name_change, split_trained_model_dir=split_trained_model_dir),
|
286 |
+
inputs=[split_model_name],
|
287 |
+
outputs=[split_label],
|
288 |
+
)
|
289 |
+
|
290 |
+
split_button.click(
|
291 |
+
when_click_split_button,
|
292 |
+
inputs=[
|
293 |
+
split_audio,
|
294 |
+
split_model_name, split_label,
|
295 |
+
split_win_size, split_win_step,
|
296 |
+
split_n_erode, split_n_dilate,
|
297 |
+
],
|
298 |
+
outputs=[split_sub_audio_dataset_state, split_sub_audio_dataset],
|
299 |
+
)
|
300 |
+
|
301 |
+
return locals()
|
302 |
+
|
303 |
+
|
304 |
+
if __name__ == "__main__":
|
305 |
+
pass
|
toolbox/cv2/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/cv2/misc.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
from typing import List, Union
|
4 |
+
|
5 |
+
|
6 |
+
def erode(labels: List[Union[str, int]], erode_label: Union[str, int], n: int = 1):
|
7 |
+
"""
|
8 |
+
遍历 labels 列表, 将连续的 erode_label 标签侵蚀 n 个.
|
9 |
+
"""
|
10 |
+
result = list()
|
11 |
+
in_span = False
|
12 |
+
count = 0
|
13 |
+
for idx, label in enumerate(labels):
|
14 |
+
if label == erode_label:
|
15 |
+
if not in_span:
|
16 |
+
in_span = True
|
17 |
+
count = 0
|
18 |
+
if count < n:
|
19 |
+
if len(result) == 0:
|
20 |
+
result.append(label)
|
21 |
+
else:
|
22 |
+
result.append(result[-1])
|
23 |
+
count += 1
|
24 |
+
continue
|
25 |
+
else:
|
26 |
+
result.append(label)
|
27 |
+
continue
|
28 |
+
elif label != erode_label:
|
29 |
+
if in_span:
|
30 |
+
in_span = False
|
31 |
+
|
32 |
+
for i in range(min(len(result), n)):
|
33 |
+
result[-i-1] = label
|
34 |
+
result.append(label)
|
35 |
+
continue
|
36 |
+
else:
|
37 |
+
result.append(label)
|
38 |
+
continue
|
39 |
+
|
40 |
+
result.append(label)
|
41 |
+
return result
|
42 |
+
|
43 |
+
|
44 |
+
def dilate(labels: List[Union[str, int]], dilate_label: Union[str, int], n: int = 1):
|
45 |
+
"""
|
46 |
+
遍历 labels 列表, 将连续的 dilate_label 标签扩张 n 个.
|
47 |
+
"""
|
48 |
+
result = list()
|
49 |
+
in_span = False
|
50 |
+
count = float('inf')
|
51 |
+
for idx, label in enumerate(labels):
|
52 |
+
if count < n:
|
53 |
+
result.append(dilate_label)
|
54 |
+
count += 1
|
55 |
+
continue
|
56 |
+
if label == dilate_label:
|
57 |
+
if not in_span:
|
58 |
+
in_span = True
|
59 |
+
|
60 |
+
for i in range(min(len(result), n)):
|
61 |
+
result[-i-1] = label
|
62 |
+
result.append(label)
|
63 |
+
continue
|
64 |
+
else:
|
65 |
+
result.append(label)
|
66 |
+
continue
|
67 |
+
else:
|
68 |
+
if in_span:
|
69 |
+
in_span = False
|
70 |
+
result.append(dilate_label)
|
71 |
+
count = 1
|
72 |
+
continue
|
73 |
+
else:
|
74 |
+
result.append(label)
|
75 |
+
continue
|
76 |
+
|
77 |
+
return result
|
78 |
+
|
79 |
+
|
80 |
+
def demo1():
|
81 |
+
labels = [
|
82 |
+
'voice', 'mute', 'mute', 'voice', 'voice', 'voice', 'voice', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'voice',
|
83 |
+
]
|
84 |
+
|
85 |
+
result = erode(
|
86 |
+
labels=labels,
|
87 |
+
erode_label='voice',
|
88 |
+
n=1,
|
89 |
+
|
90 |
+
)
|
91 |
+
print(len(labels))
|
92 |
+
print(len(result))
|
93 |
+
print(result)
|
94 |
+
return
|
95 |
+
|
96 |
+
|
97 |
+
def demo2():
|
98 |
+
labels = [
|
99 |
+
'voice', 'mute', 'mute', 'voice', 'voice', 'voice', 'voice', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'voice',
|
100 |
+
]
|
101 |
+
|
102 |
+
result = dilate(
|
103 |
+
labels=labels,
|
104 |
+
dilate_label='voice',
|
105 |
+
n=2,
|
106 |
+
|
107 |
+
)
|
108 |
+
print(len(labels))
|
109 |
+
print(len(result))
|
110 |
+
print(result)
|
111 |
+
|
112 |
+
return
|
113 |
+
|
114 |
+
|
115 |
+
def demo3():
|
116 |
+
import time
|
117 |
+
labels = ['mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'voice', 'bell', 'bell', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'bell', 'bell', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'bell', 'bell', 'bell', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute']
|
118 |
+
|
119 |
+
begin = time.time()
|
120 |
+
labels = erode(labels, erode_label='music', n=1)
|
121 |
+
labels = dilate(labels, dilate_label='music', n=1)
|
122 |
+
|
123 |
+
labels = dilate(labels, dilate_label='voice', n=2)
|
124 |
+
labels = erode(labels, erode_label='voice', n=2)
|
125 |
+
labels = erode(labels, erode_label='voice', n=1)
|
126 |
+
labels = dilate(labels, dilate_label='voice', n=3)
|
127 |
+
|
128 |
+
cost = time.time() - begin
|
129 |
+
print(cost)
|
130 |
+
print(labels)
|
131 |
+
return
|
132 |
+
|
133 |
+
|
134 |
+
if __name__ == '__main__':
|
135 |
+
# demo1()
|
136 |
+
# demo2()
|
137 |
+
demo3()
|