Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import matplotlib.pyplot as plt
|
3 |
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
|
6 |
|
7 |
-
def plot_forecast(num_param,
|
8 |
# Convert number (input as B)
|
9 |
num_param = float(num_param) * 1e9
|
10 |
|
@@ -12,21 +10,20 @@ def plot_forecast(num_param, batch_size, precision, seq_len):
|
|
12 |
precision = {"float32": 4, "float16": 2, "bfloat16": 2}[precision]
|
13 |
|
14 |
# Model Parameters: N×precision
|
15 |
-
y1 = num_param * precision /
|
16 |
|
17 |
# Optimizer States: 2×N×precision
|
18 |
-
y2 = 2 * num_param * precision /
|
19 |
|
20 |
# Activations: B×Sequence Length×K×precision
|
21 |
K = 4.6894e-4 * num_param + 1.8494e6
|
22 |
-
|
23 |
-
y3 = batch_size * seq_len * K * precision / (1000**3)
|
24 |
|
25 |
# Gradients: N×precision
|
26 |
-
y4 = num_param * precision /
|
27 |
|
28 |
# Optimizer intermediates: N×precision
|
29 |
-
y5 = num_param * precision /
|
30 |
|
31 |
# Calculate total memory
|
32 |
total_memory = y1 + y2 + max(y3, y4 + y5)
|
@@ -44,10 +41,36 @@ def plot_forecast(num_param, batch_size, precision, seq_len):
|
|
44 |
|
45 |
# Add text labels inside the bars
|
46 |
ax.text(0, y1 / 2, f"Model Parameters ({y1:.1f} GB)", ha="center", va="center", color="white", fontweight="bold")
|
47 |
-
ax.text(
|
48 |
-
|
49 |
-
|
50 |
-
ax.text(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Or as title
|
53 |
ax.set_title(f"Total Memory: {total_memory:.1f} GB", fontweight="bold")
|
@@ -66,10 +89,10 @@ def plot_forecast(num_param, batch_size, precision, seq_len):
|
|
66 |
demo = gr.Interface(
|
67 |
plot_forecast,
|
68 |
[
|
69 |
-
gr.Number(
|
70 |
-
gr.Radio([1, 2, 4, 8, 16, 32, 64, 128], value=8, label="Batch size"),
|
71 |
gr.Radio(["float32", "float16", "bfloat16"], value="float32", label="Precision"),
|
72 |
-
gr.Slider(1,
|
|
|
73 |
],
|
74 |
gr.Plot(label="forecast", format="png"),
|
75 |
)
|
|
|
1 |
import gradio as gr
|
2 |
import matplotlib.pyplot as plt
|
3 |
|
|
|
|
|
4 |
|
5 |
+
def plot_forecast(num_param, precision, batch_size, seq_len):
|
6 |
# Convert number (input as B)
|
7 |
num_param = float(num_param) * 1e9
|
8 |
|
|
|
10 |
precision = {"float32": 4, "float16": 2, "bfloat16": 2}[precision]
|
11 |
|
12 |
# Model Parameters: N×precision
|
13 |
+
y1 = num_param * precision / 1e9
|
14 |
|
15 |
# Optimizer States: 2×N×precision
|
16 |
+
y2 = 2 * num_param * precision / 1e9
|
17 |
|
18 |
# Activations: B×Sequence Length×K×precision
|
19 |
K = 4.6894e-4 * num_param + 1.8494e6
|
20 |
+
y3 = batch_size * seq_len * K * precision / 1e9
|
|
|
21 |
|
22 |
# Gradients: N×precision
|
23 |
+
y4 = num_param * precision / 1e9
|
24 |
|
25 |
# Optimizer intermediates: N×precision
|
26 |
+
y5 = num_param * precision / 1e9
|
27 |
|
28 |
# Calculate total memory
|
29 |
total_memory = y1 + y2 + max(y3, y4 + y5)
|
|
|
41 |
|
42 |
# Add text labels inside the bars
|
43 |
ax.text(0, y1 / 2, f"Model Parameters ({y1:.1f} GB)", ha="center", va="center", color="white", fontweight="bold")
|
44 |
+
ax.text(
|
45 |
+
0, y1 + y2 / 2, f"Optimizer States ({y2:.1f} GB)", ha="center", va="center", color="white", fontweight="bold"
|
46 |
+
)
|
47 |
+
ax.text(
|
48 |
+
-bar_width / 4,
|
49 |
+
y1 + y2 + y3 / 2,
|
50 |
+
f"Activations\n({y3:.1f} GB)",
|
51 |
+
ha="center",
|
52 |
+
va="center",
|
53 |
+
color="white",
|
54 |
+
fontweight="bold",
|
55 |
+
)
|
56 |
+
ax.text(
|
57 |
+
bar_width / 4,
|
58 |
+
y1 + y2 + y4 / 2,
|
59 |
+
f"Gradients\n({y4:.1f} GB)",
|
60 |
+
ha="center",
|
61 |
+
va="center",
|
62 |
+
color="white",
|
63 |
+
fontweight="bold",
|
64 |
+
)
|
65 |
+
ax.text(
|
66 |
+
bar_width / 4,
|
67 |
+
y1 + y2 + y4 + y5 / 2,
|
68 |
+
f"Optimizer\nintermediates\n({y5:.1f} GB)",
|
69 |
+
ha="center",
|
70 |
+
va="center",
|
71 |
+
color="white",
|
72 |
+
fontweight="bold",
|
73 |
+
)
|
74 |
|
75 |
# Or as title
|
76 |
ax.set_title(f"Total Memory: {total_memory:.1f} GB", fontweight="bold")
|
|
|
89 |
demo = gr.Interface(
|
90 |
plot_forecast,
|
91 |
[
|
92 |
+
gr.Number(3, label="Number of parameters (B)"),
|
|
|
93 |
gr.Radio(["float32", "float16", "bfloat16"], value="float32", label="Precision"),
|
94 |
+
gr.Slider(1, 128, label="Batch size", step=1, value=8),
|
95 |
+
gr.Slider(1, 1000, label="Sequence Length", step=1, value=256),
|
96 |
],
|
97 |
gr.Plot(label="forecast", format="png"),
|
98 |
)
|