qgallouedec HF staff commited on
Commit
ac8821a
·
verified ·
1 Parent(s): f8eee5a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -16
app.py CHANGED
@@ -1,10 +1,8 @@
1
  import gradio as gr
2
  import matplotlib.pyplot as plt
3
 
4
- import matplotlib.pyplot as plt
5
-
6
 
7
- def plot_forecast(num_param, batch_size, precision, seq_len):
8
  # Convert number (input as B)
9
  num_param = float(num_param) * 1e9
10
 
@@ -12,21 +10,20 @@ def plot_forecast(num_param, batch_size, precision, seq_len):
12
  precision = {"float32": 4, "float16": 2, "bfloat16": 2}[precision]
13
 
14
  # Model Parameters: N×precision
15
- y1 = num_param * precision / (1000**3)
16
 
17
  # Optimizer States: 2×N×precision
18
- y2 = 2 * num_param * precision / (1000**3)
19
 
20
  # Activations: B×Sequence Length×K×precision
21
  K = 4.6894e-4 * num_param + 1.8494e6
22
- print(K)
23
- y3 = batch_size * seq_len * K * precision / (1000**3)
24
 
25
  # Gradients: N×precision
26
- y4 = num_param * precision / (1000**3)
27
 
28
  # Optimizer intermediates: N×precision
29
- y5 = num_param * precision / (1000**3)
30
 
31
  # Calculate total memory
32
  total_memory = y1 + y2 + max(y3, y4 + y5)
@@ -44,10 +41,36 @@ def plot_forecast(num_param, batch_size, precision, seq_len):
44
 
45
  # Add text labels inside the bars
46
  ax.text(0, y1 / 2, f"Model Parameters ({y1:.1f} GB)", ha="center", va="center", color="white", fontweight="bold")
47
- ax.text(0, y1 + y2 / 2, f"Optimizer States ({y2:.1f} GB)", ha="center", va="center", color="white", fontweight="bold")
48
- ax.text(-bar_width / 4, y1 + y2 + y3 / 2, f"Activations\n({y3:.1f} GB)", ha="center", va="center", color="white", fontweight="bold")
49
- ax.text(bar_width / 4, y1 + y2 + y4 / 2, f"Gradients\n({y4:.1f} GB)", ha="center", va="center", color="white", fontweight="bold")
50
- ax.text(bar_width / 4, y1 + y2 + y4 + y5 / 2, f"Optimizer\nintermediates\n({y5:.1f} GB)", ha="center", va="center", color="white", fontweight="bold")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  # Or as title
53
  ax.set_title(f"Total Memory: {total_memory:.1f} GB", fontweight="bold")
@@ -66,10 +89,10 @@ def plot_forecast(num_param, batch_size, precision, seq_len):
66
  demo = gr.Interface(
67
  plot_forecast,
68
  [
69
- gr.Number(7, label="Number of parameters (B)"),
70
- gr.Radio([1, 2, 4, 8, 16, 32, 64, 128], value=8, label="Batch size"),
71
  gr.Radio(["float32", "float16", "bfloat16"], value="float32", label="Precision"),
72
- gr.Slider(1, 1000, label="Sequence Length", step=1, value=128),
 
73
  ],
74
  gr.Plot(label="forecast", format="png"),
75
  )
 
1
  import gradio as gr
2
  import matplotlib.pyplot as plt
3
 
 
 
4
 
5
+ def plot_forecast(num_param, precision, batch_size, seq_len):
6
  # Convert number (input as B)
7
  num_param = float(num_param) * 1e9
8
 
 
10
  precision = {"float32": 4, "float16": 2, "bfloat16": 2}[precision]
11
 
12
  # Model Parameters: N×precision
13
+ y1 = num_param * precision / 1e9
14
 
15
  # Optimizer States: 2×N×precision
16
+ y2 = 2 * num_param * precision / 1e9
17
 
18
  # Activations: B×Sequence Length×K×precision
19
  K = 4.6894e-4 * num_param + 1.8494e6
20
+ y3 = batch_size * seq_len * K * precision / 1e9
 
21
 
22
  # Gradients: N×precision
23
+ y4 = num_param * precision / 1e9
24
 
25
  # Optimizer intermediates: N×precision
26
+ y5 = num_param * precision / 1e9
27
 
28
  # Calculate total memory
29
  total_memory = y1 + y2 + max(y3, y4 + y5)
 
41
 
42
  # Add text labels inside the bars
43
  ax.text(0, y1 / 2, f"Model Parameters ({y1:.1f} GB)", ha="center", va="center", color="white", fontweight="bold")
44
+ ax.text(
45
+ 0, y1 + y2 / 2, f"Optimizer States ({y2:.1f} GB)", ha="center", va="center", color="white", fontweight="bold"
46
+ )
47
+ ax.text(
48
+ -bar_width / 4,
49
+ y1 + y2 + y3 / 2,
50
+ f"Activations\n({y3:.1f} GB)",
51
+ ha="center",
52
+ va="center",
53
+ color="white",
54
+ fontweight="bold",
55
+ )
56
+ ax.text(
57
+ bar_width / 4,
58
+ y1 + y2 + y4 / 2,
59
+ f"Gradients\n({y4:.1f} GB)",
60
+ ha="center",
61
+ va="center",
62
+ color="white",
63
+ fontweight="bold",
64
+ )
65
+ ax.text(
66
+ bar_width / 4,
67
+ y1 + y2 + y4 + y5 / 2,
68
+ f"Optimizer\nintermediates\n({y5:.1f} GB)",
69
+ ha="center",
70
+ va="center",
71
+ color="white",
72
+ fontweight="bold",
73
+ )
74
 
75
  # Or as title
76
  ax.set_title(f"Total Memory: {total_memory:.1f} GB", fontweight="bold")
 
89
  demo = gr.Interface(
90
  plot_forecast,
91
  [
92
+ gr.Number(3, label="Number of parameters (B)"),
 
93
  gr.Radio(["float32", "float16", "bfloat16"], value="float32", label="Precision"),
94
+ gr.Slider(1, 128, label="Batch size", step=1, value=8),
95
+ gr.Slider(1, 1000, label="Sequence Length", step=1, value=256),
96
  ],
97
  gr.Plot(label="forecast", format="png"),
98
  )