Spaces:
Running
on
Zero
Running
on
Zero
frankaging
commited on
Commit
·
558908a
1
Parent(s):
2af56ae
update
Browse files
README.md
CHANGED
@@ -1,17 +1,15 @@
|
|
1 |
---
|
2 |
-
title: ReFT-
|
3 |
emoji: 🫠
|
4 |
colorFrom: red
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
suggested_hardware: a10g-small
|
11 |
---
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
ReFT was introduced in [this paper](https://arxiv.org/abs/2404.03592).
|
|
|
1 |
---
|
2 |
+
title: SDL-ReFT-cr1
|
3 |
emoji: 🫠
|
4 |
colorFrom: red
|
5 |
+
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.13.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
suggested_hardware: a10g-small
|
11 |
---
|
12 |
|
13 |
+
# Model conditioned steering with supervised dictionary learning (SDL).
|
14 |
|
15 |
+
This is a demo of model steering with Supervised Dictionary Learning (SDL) using AxBench-ReFT-r1-16K which hosts steering vectors for 16K concepts.
|
|
|
|
app.py
CHANGED
@@ -1,157 +1,387 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
4 |
-
|
5 |
-
from huggingface_hub import login
|
6 |
-
login(token=HF_TOKEN)
|
7 |
-
|
8 |
-
from threading import Thread
|
9 |
-
from typing import Iterator
|
10 |
-
|
11 |
import gradio as gr
|
12 |
import spaces
|
13 |
-
import
|
14 |
-
from
|
15 |
-
|
16 |
import pyreft
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
22 |
|
23 |
-
|
|
|
24 |
|
25 |
-
|
26 |
-
#
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
40 |
if not torch.cuda.is_available():
|
41 |
-
|
42 |
-
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
if torch.cuda.is_available():
|
45 |
-
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
46 |
model = AutoModelForCausalLM.from_pretrained(
|
47 |
model_id, device_map="cuda", torch_dtype=torch.bfloat16
|
48 |
)
|
49 |
-
reft_model = ReftModel.load("pyvene/reft_goody2_llama3", model, from_huggingface_hub=True)
|
50 |
-
reft_model.set_device("cuda")
|
51 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
@spaces.GPU
|
78 |
def generate(
|
79 |
message: str,
|
80 |
chat_history: list[tuple[str, str]],
|
81 |
-
|
|
|
|
|
82 |
) -> Iterator[str]:
|
83 |
|
84 |
-
#
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
)]).permute(1, 0, 2).tolist()
|
99 |
-
|
100 |
-
input_ids = prompt["input_ids"]
|
101 |
-
attention_mask = prompt["attention_mask"]
|
102 |
-
|
103 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
104 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
109 |
generate_kwargs = {
|
110 |
-
"base": {"input_ids": input_ids
|
111 |
-
"unit_locations":
|
112 |
"max_new_tokens": max_new_tokens,
|
113 |
"intervene_on_prompt": True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
"streamer": streamer,
|
115 |
-
"
|
116 |
-
"early_stopping": True,
|
117 |
-
"do_sample": False
|
118 |
}
|
119 |
|
120 |
-
t = Thread(target=
|
121 |
t.start()
|
122 |
|
123 |
-
|
124 |
-
for
|
125 |
-
|
126 |
-
yield "".join(
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
]
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
|
|
|
1 |
+
import os, json, random
|
2 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
import spaces
|
5 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
+
from huggingface_hub import login, hf_hub_download
|
|
|
7 |
import pyreft
|
8 |
+
import pyvene as pv
|
9 |
+
from threading import Thread
|
10 |
+
from typing import Iterator
|
11 |
+
import torch.nn.functional as F
|
|
|
12 |
|
13 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
14 |
+
login(token=HF_TOKEN)
|
15 |
|
16 |
+
MAX_MAX_NEW_TOKENS = 2048
|
17 |
+
DEFAULT_MAX_NEW_TOKENS = 256 # smaller default to save memory
|
18 |
+
MAX_INPUT_TOKEN_LENGTH = 4096
|
19 |
|
20 |
+
css = """
|
21 |
+
#alert-message textarea {
|
22 |
+
background-color: #e8f4ff;
|
23 |
+
border: 1px solid #cce5ff;
|
24 |
+
color: #084298;
|
25 |
+
font-size: 1.1em;
|
26 |
+
padding: 12px;
|
27 |
+
border-radius: 4px;
|
28 |
+
font-weight: 500;
|
29 |
+
}
|
30 |
+
"""
|
31 |
|
32 |
+
def load_jsonl(jsonl_path):
|
33 |
+
jsonl_data = []
|
34 |
+
with open(jsonl_path, 'r') as f:
|
35 |
+
for line in f:
|
36 |
+
data = json.loads(line)
|
37 |
+
jsonl_data.append(data)
|
38 |
+
return jsonl_data
|
39 |
|
40 |
+
class Steer(pv.SourcelessIntervention):
|
41 |
+
"""Steer model via activation addition"""
|
42 |
+
def __init__(self, **kwargs):
|
43 |
+
super().__init__(**kwargs, keep_last_dim=True)
|
44 |
+
self.proj = torch.nn.Linear(
|
45 |
+
self.embed_dim, kwargs["latent_dim"], bias=False)
|
46 |
+
self.subspace_generator = kwargs["subspace_generator"]
|
47 |
+
|
48 |
+
def steer(self, base, source=None, subspaces=None):
|
49 |
+
if subspaces["steer"]["subspace_gen_inputs"] is not None:
|
50 |
+
# we call our subspace generator to generate the subspace on-the-fly.
|
51 |
+
raw_steering_vec = self.subspace_generator(
|
52 |
+
subspaces["steer"]["subspace_gen_inputs"]["input_ids"],
|
53 |
+
subspaces["steer"]["subspace_gen_inputs"]["attention_mask"],
|
54 |
+
)[0]
|
55 |
+
steering_vec = torch.tensor(subspaces["steer"]["mag"]) * \
|
56 |
+
raw_steering_vec.unsqueeze(dim=0)
|
57 |
+
return base + steering_vec
|
58 |
+
else:
|
59 |
+
steering_vec = torch.tensor(subspaces["steer"]["mag"]) * \
|
60 |
+
self.proj.weight[subspaces["steer"]["idx"]].unsqueeze(dim=0)
|
61 |
+
return base + steering_vec
|
62 |
+
|
63 |
+
def forward(self, base, source=None, subspaces=None):
|
64 |
+
if subspaces == None:
|
65 |
+
return base
|
66 |
+
if subspaces["detect"] is not None:
|
67 |
+
if subspaces["detect"]["subspace_gen_inputs"] is not None:
|
68 |
+
# we call our subspace generator to generate the subspace on-the-fly.
|
69 |
+
raw_detection_vec = self.subspace_generator(
|
70 |
+
subspaces["detect"]["subspace_gen_inputs"]["input_ids"],
|
71 |
+
subspaces["detect"]["subspace_gen_inputs"]["attention_mask"],
|
72 |
+
)[0].unsqueeze(dim=-1)
|
73 |
+
else:
|
74 |
+
raw_detection_vec = self.proj.weight[subspaces["detect"]["idx"]].unsqueeze(dim=-1)
|
75 |
+
print(base.shape)
|
76 |
+
print(raw_detection_vec.shape)
|
77 |
+
detection_latent = torch.matmul(base, raw_detection_vec.to(base.dtype)).squeeze(dim=-1) # (batch_size, seq, 1) -> (batch_size, seq)
|
78 |
+
max_latent = torch.max(detection_latent, dim=-1).values[0] # (batch_size, seq) -> (batch_size)
|
79 |
+
print("max_latent", max_latent)
|
80 |
+
if max_latent > torch.tensor(subspaces["detect"]["mag"]):
|
81 |
+
print("Detected!")
|
82 |
+
return self.steer(base, source, subspaces)
|
83 |
+
else:
|
84 |
+
return base
|
85 |
+
else:
|
86 |
+
return self.steer(base, source, subspaces)
|
87 |
+
|
88 |
+
class RegressionWrapper(torch.nn.Module):
|
89 |
+
def __init__(self, base_model, hidden_size, output_dim):
|
90 |
+
super().__init__()
|
91 |
+
self.base_model = base_model
|
92 |
+
self.regression_head = torch.nn.Linear(hidden_size, output_dim)
|
93 |
|
94 |
+
def forward(self, input_ids, attention_mask):
|
95 |
+
outputs = self.base_model.model(
|
96 |
+
input_ids=input_ids,
|
97 |
+
attention_mask=attention_mask,
|
98 |
+
output_hidden_states=True,
|
99 |
+
return_dict=True
|
100 |
+
)
|
101 |
+
last_hiddens = outputs.hidden_states[-1]
|
102 |
+
last_token_representations = last_hiddens[:, -1]
|
103 |
+
preds = self.regression_head(last_token_representations)
|
104 |
+
preds = F.normalize(preds, p=2, dim=-1)
|
105 |
+
return preds
|
106 |
|
107 |
+
# Check GPU
|
108 |
if not torch.cuda.is_available():
|
109 |
+
print("Warning: Running on CPU, may be slow.")
|
|
|
110 |
|
111 |
+
# Load model & dictionary
|
112 |
+
model_id = "google/gemma-2-2b-it"
|
113 |
+
pv_model = None
|
114 |
+
tokenizer = None
|
115 |
+
concept_list = []
|
116 |
+
concept_id_map = {}
|
117 |
if torch.cuda.is_available():
|
|
|
118 |
model = AutoModelForCausalLM.from_pretrained(
|
119 |
model_id, device_map="cuda", torch_dtype=torch.bfloat16
|
120 |
)
|
|
|
|
|
121 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
122 |
+
|
123 |
+
# Download dictionary
|
124 |
+
weight_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/weight.pt")
|
125 |
+
meta_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/metadata.jsonl")
|
126 |
+
params = torch.load(weight_path).cuda()
|
127 |
+
md = load_jsonl(meta_path)
|
128 |
+
|
129 |
+
concept_list = [item["concept"] for item in md]
|
130 |
+
concept_id_map = {}
|
131 |
+
|
132 |
+
# the reason to reindex is because there is one concept that is missing.
|
133 |
+
concept_reindex = 0
|
134 |
+
for item in md:
|
135 |
+
concept_id_map[item["concept"]] = concept_reindex
|
136 |
+
concept_reindex += 1
|
137 |
+
|
138 |
+
# load subspace generator.
|
139 |
+
base_tokenizer = AutoTokenizer.from_pretrained(
|
140 |
+
f"google/gemma-2-2b", model_max_length=512)
|
141 |
+
config = AutoConfig.from_pretrained("google/gemma-2-2b")
|
142 |
+
base_model = AutoModelForCausalLM.from_config(config)
|
143 |
+
|
144 |
+
subspace_generator_weight_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res-generator", filename="l20/weight.pt")
|
145 |
+
hidden_size = base_model.config.hidden_size
|
146 |
+
subspace_generator = RegressionWrapper(
|
147 |
+
base_model, hidden_size, hidden_size).bfloat16().to("cuda")
|
148 |
+
subspace_generator.load_state_dict(torch.load(subspace_generator_weight_path))
|
149 |
+
print(f"Loading model from saved file {subspace_generator_weight_path}")
|
150 |
+
_ = subspace_generator.eval()
|
151 |
+
|
152 |
+
steer = Steer(
|
153 |
+
embed_dim=params.shape[0], latent_dim=params.shape[1],
|
154 |
+
subspace_generator=subspace_generator)
|
155 |
+
steer.proj.weight.data = params.float()
|
156 |
+
|
157 |
+
pv_model = pv.IntervenableModel({
|
158 |
+
"component": f"model.layers[20].output",
|
159 |
+
"intervention": steer}, model=model)
|
160 |
+
|
161 |
+
terminators = [tokenizer.eos_token_id] if tokenizer else []
|
162 |
|
163 |
@spaces.GPU
|
164 |
def generate(
|
165 |
message: str,
|
166 |
chat_history: list[tuple[str, str]],
|
167 |
+
detection_list: list[dict],
|
168 |
+
steering_list: list[dict],
|
169 |
+
max_new_tokens: int=DEFAULT_MAX_NEW_TOKENS,
|
170 |
) -> Iterator[str]:
|
171 |
|
172 |
+
# limit to last 4 turns
|
173 |
+
start_idx = max(0, len(chat_history) - 4)
|
174 |
+
recent_history = chat_history[start_idx:]
|
175 |
+
|
176 |
+
# build list of messages
|
177 |
+
messages = []
|
178 |
+
for rh in recent_history:
|
179 |
+
messages.append({"role": rh["role"], "content": rh["content"]})
|
180 |
+
messages.append({"role": "user", "content": message})
|
181 |
+
|
182 |
+
input_ids = torch.tensor([tokenizer.apply_chat_template(
|
183 |
+
messages, tokenize=True, add_generation_prompt=True)]).cuda()
|
184 |
+
|
185 |
+
# trim if needed
|
|
|
|
|
|
|
|
|
|
|
186 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
187 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
188 |
+
yield "[Truncated prior text]\n"
|
189 |
+
|
|
|
190 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
191 |
+
print("detection_list: ", detection_list)
|
192 |
+
print("steering_list: ", steering_list)
|
193 |
generate_kwargs = {
|
194 |
+
"base": {"input_ids": input_ids},
|
195 |
+
"unit_locations": None,
|
196 |
"max_new_tokens": max_new_tokens,
|
197 |
"intervene_on_prompt": True,
|
198 |
+
"subspaces": [
|
199 |
+
{
|
200 |
+
"detect": {
|
201 |
+
"idx": int(detection_list[0]["idx"]),
|
202 |
+
"mag": detection_list[0]["internal_mag"]*50,
|
203 |
+
"subspace_gen_inputs": base_tokenizer(detection_list[0]["subspace_gen_text"], return_tensors="pt").to("cuda") \
|
204 |
+
if detection_list[0]["subspace_gen_text"] is not None else None
|
205 |
+
} if detection_list else None,
|
206 |
+
"steer": {
|
207 |
+
"idx": int(steering_list[0]["idx"]),
|
208 |
+
"mag": steering_list[0]["internal_mag"]*50,
|
209 |
+
"subspace_gen_inputs": base_tokenizer(steering_list[0]["subspace_gen_text"], return_tensors="pt").to("cuda") \
|
210 |
+
if steering_list[0]["subspace_gen_text"] is not None else None
|
211 |
+
}
|
212 |
+
}
|
213 |
+
] if steering_list else None, # if steering is not provided, we do not steer.
|
214 |
"streamer": streamer,
|
215 |
+
"do_sample": True
|
|
|
|
|
216 |
}
|
217 |
|
218 |
+
t = Thread(target=pv_model.generate, kwargs=generate_kwargs)
|
219 |
t.start()
|
220 |
|
221 |
+
partial_text = []
|
222 |
+
for token_str in streamer:
|
223 |
+
partial_text.append(token_str)
|
224 |
+
yield "".join(partial_text)
|
225 |
+
|
226 |
+
def filter_concepts(search_text: str):
|
227 |
+
if not search_text.strip():
|
228 |
+
return concept_list[:500]
|
229 |
+
filtered = [c for c in concept_list if search_text.lower() in c.lower()]
|
230 |
+
return filtered[:500]
|
231 |
+
|
232 |
+
def add_concept_to_list(selected_concept, user_slider_val, current_list):
|
233 |
+
if not selected_concept:
|
234 |
+
return current_list
|
235 |
+
|
236 |
+
selected_concept_text = None
|
237 |
+
if selected_concept.startswith("[New] "):
|
238 |
+
selected_concept_text = selected_concept[6:]
|
239 |
+
idx = 0
|
240 |
+
else:
|
241 |
+
idx = concept_id_map[selected_concept]
|
242 |
+
internal_mag = user_slider_val
|
243 |
+
new_entry = {
|
244 |
+
"text": selected_concept,
|
245 |
+
"idx": idx,
|
246 |
+
"display_mag": user_slider_val,
|
247 |
+
"internal_mag": internal_mag,
|
248 |
+
"subspace_gen_text": selected_concept_text
|
249 |
+
}
|
250 |
+
# Add to the beginning of the list
|
251 |
+
current_list = [new_entry]
|
252 |
+
return current_list
|
253 |
+
|
254 |
+
def update_dropdown_choices(search_text):
|
255 |
+
filtered = filter_concepts(search_text)
|
256 |
+
if not filtered or len(filtered) == 0:
|
257 |
+
return gr.update(choices=[f"[New] {search_text}"], value=f"[New] {search_text}", interactive=True), gr.Textbox(
|
258 |
+
label="No matching existing concepts were found!",
|
259 |
+
value="Good news! Based on the concept you provided, we will automatically generate a steering vector. Try it out by starting a chat!",
|
260 |
+
lines=3,
|
261 |
+
interactive=False,
|
262 |
+
visible=True,
|
263 |
+
elem_id="alert-message"
|
264 |
+
)
|
265 |
+
# Automatically select the first matching concept
|
266 |
+
return gr.update(
|
267 |
+
choices=filtered,
|
268 |
+
value=filtered[0], # Select the first match
|
269 |
+
interactive=True, visible=True
|
270 |
+
), gr.Textbox(visible=False)
|
271 |
+
|
272 |
+
with gr.Blocks(css=css, fill_height=True) as demo:
|
273 |
+
# States for both detection and steering
|
274 |
+
selected_detection = gr.State([])
|
275 |
+
selected_subspaces = gr.State([])
|
276 |
+
|
277 |
+
with gr.Row(min_height=1000):
|
278 |
+
# Left side: chat area
|
279 |
+
with gr.Column(scale=7):
|
280 |
+
chat_interface = gr.ChatInterface(
|
281 |
+
fn=generate,
|
282 |
+
title="Chat with a Concept Steering Model",
|
283 |
+
description="""You can only steer the model when a concept is detected internally. Select concepts on the right →\n\nWe intervene on Gemma-2-2B-it by adding steering vectors to the residual stream at layer 20.""",
|
284 |
+
type="messages",
|
285 |
+
additional_inputs=[selected_detection, selected_subspaces],
|
286 |
+
fill_height=True,
|
287 |
+
css=".gradio-chatbot {min-height: 1500px;}"
|
288 |
+
)
|
289 |
+
|
290 |
+
# Right side: concept detection and steering
|
291 |
+
with gr.Column(scale=3):
|
292 |
+
# Concept Detection Panel
|
293 |
+
# gr.Markdown("## Detect then Steer")
|
294 |
+
gr.Markdown("Select a concept to detect. We will only steer the model when this concept is detected internally.")
|
295 |
+
with gr.Group():
|
296 |
+
detect_search = gr.Textbox(
|
297 |
+
label="Search Detection Concepts",
|
298 |
+
placeholder="Find concepts to detect (e.g. 'Google')",
|
299 |
+
lines=1,
|
300 |
+
)
|
301 |
+
detect_msg = gr.TextArea(visible=False)
|
302 |
+
detect_dropdown = gr.Dropdown(
|
303 |
+
label="Select concept to detect",
|
304 |
+
interactive=True,
|
305 |
+
allow_custom_value=False,
|
306 |
+
)
|
307 |
+
detect_threshold = gr.Slider(
|
308 |
+
label="Detection Threshold",
|
309 |
+
minimum=0,
|
310 |
+
maximum=1,
|
311 |
+
step=0.01,
|
312 |
+
value=0.5,
|
313 |
+
)
|
314 |
+
|
315 |
+
# Divider
|
316 |
+
# gr.Markdown("---")
|
317 |
+
|
318 |
+
# Steering Panel (existing)
|
319 |
+
# gr.Markdown("## Steer Response")
|
320 |
+
gr.Markdown("Select a concept to steer when detection occurs.")
|
321 |
+
with gr.Group():
|
322 |
+
search_box = gr.Textbox(
|
323 |
+
label="Search Steering Concepts",
|
324 |
+
placeholder="Find concepts to steer the model (e.g. 'ethics and morality')",
|
325 |
+
lines=1,
|
326 |
+
)
|
327 |
+
msg = gr.TextArea(visible=False)
|
328 |
+
concept_dropdown = gr.Dropdown(
|
329 |
+
label="Select concept to steer",
|
330 |
+
interactive=True,
|
331 |
+
allow_custom_value=False,
|
332 |
+
)
|
333 |
+
concept_magnitude = gr.Slider(
|
334 |
+
label="Steering Intensity",
|
335 |
+
minimum=-5,
|
336 |
+
maximum=5,
|
337 |
+
step=0.1,
|
338 |
+
value=3.5,
|
339 |
+
)
|
340 |
+
|
341 |
+
# Wire up events for detection
|
342 |
+
detect_search.input(
|
343 |
+
update_dropdown_choices,
|
344 |
+
[detect_search],
|
345 |
+
[detect_dropdown, detect_msg]
|
346 |
+
).then(
|
347 |
+
add_concept_to_list,
|
348 |
+
[detect_dropdown, detect_threshold, selected_detection],
|
349 |
+
[selected_detection]
|
350 |
+
)
|
351 |
+
|
352 |
+
detect_dropdown.select(
|
353 |
+
add_concept_to_list,
|
354 |
+
[detect_dropdown, detect_threshold, selected_detection],
|
355 |
+
[selected_detection]
|
356 |
+
)
|
357 |
+
|
358 |
+
detect_threshold.input(
|
359 |
+
add_concept_to_list,
|
360 |
+
[detect_dropdown, detect_threshold, selected_detection],
|
361 |
+
[selected_detection]
|
362 |
+
)
|
363 |
+
|
364 |
+
# Wire up events for steering (existing)
|
365 |
+
search_box.input(
|
366 |
+
update_dropdown_choices,
|
367 |
+
[search_box],
|
368 |
+
[concept_dropdown, msg]
|
369 |
+
).then(
|
370 |
+
add_concept_to_list,
|
371 |
+
[concept_dropdown, concept_magnitude, selected_subspaces],
|
372 |
+
[selected_subspaces]
|
373 |
+
)
|
374 |
+
|
375 |
+
concept_dropdown.select(
|
376 |
+
add_concept_to_list,
|
377 |
+
[concept_dropdown, concept_magnitude, selected_subspaces],
|
378 |
+
[selected_subspaces]
|
379 |
+
)
|
380 |
+
|
381 |
+
concept_magnitude.input(
|
382 |
+
add_concept_to_list,
|
383 |
+
[concept_dropdown, concept_magnitude, selected_subspaces],
|
384 |
+
[selected_subspaces]
|
385 |
+
)
|
386 |
|
387 |
+
demo.launch(share=True, height=1000)
|
style.css
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
h1 {
|
2 |
-
text-align: center;
|
3 |
-
display: block;
|
4 |
-
}
|
5 |
-
|
6 |
-
#duplicate-button {
|
7 |
-
margin: auto;
|
8 |
-
color: white;
|
9 |
-
background: #1565c0;
|
10 |
-
border-radius: 100vh;
|
11 |
-
}
|
12 |
-
|
13 |
-
.contain {
|
14 |
-
max-width: 900px;
|
15 |
-
margin: auto;
|
16 |
-
padding-top: 1.5rem;
|
17 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|