Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
model = torch.hub.load('pytorch/vision:v0.9.0', 'deeplabv3_resnet101', pretrained=True)
|
3 |
+
model.eval()
|
4 |
+
# Download an example image from the pytorch website
|
5 |
+
import urllib
|
6 |
+
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
|
7 |
+
try: urllib.URLopener().retrieve(url, filename)
|
8 |
+
except: urllib.request.urlretrieve(url, filename)
|
9 |
+
# sample execution (requires torchvision)
|
10 |
+
from PIL import Image
|
11 |
+
from torchvision import transforms
|
12 |
+
import gradio as gr
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
|
15 |
+
|
16 |
+
def inference(input_image):
|
17 |
+
preprocess = transforms.Compose([
|
18 |
+
transforms.ToTensor(),
|
19 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
20 |
+
])
|
21 |
+
|
22 |
+
input_tensor = preprocess(input_image)
|
23 |
+
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
|
24 |
+
|
25 |
+
# move the input and model to GPU for speed if available
|
26 |
+
if torch.cuda.is_available():
|
27 |
+
input_batch = input_batch.to('cuda')
|
28 |
+
model.to('cuda')
|
29 |
+
|
30 |
+
with torch.no_grad():
|
31 |
+
output = model(input_batch)['out'][0]
|
32 |
+
output_predictions = output.argmax(0)
|
33 |
+
# create a color pallette, selecting a color for each class
|
34 |
+
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
|
35 |
+
colors = torch.as_tensor([i for i in range(21)])[:, None] * palette
|
36 |
+
colors = (colors % 255).numpy().astype("uint8")
|
37 |
+
|
38 |
+
# plot the semantic segmentation predictions of 21 classes in each color
|
39 |
+
r = Image.fromarray(output_predictions.byte().cpu().numpy()).resize(input_image.size)
|
40 |
+
r.putpalette(colors)
|
41 |
+
plt.imshow(r)
|
42 |
+
return plt
|
43 |
+
|
44 |
+
title = "DEEPLABV3-RESNET101"
|
45 |
+
description = "demo for DEEPLABV3-RESNET101, DeepLabV3 model with a ResNet-101 backbone. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
46 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1706.05587'>Rethinking Atrous Convolution for Semantic Image Segmentation</a> | <a href='https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/deeplabv3.py'>Github Repo</a></p>"
|
47 |
+
|
48 |
+
gr.Interface(
|
49 |
+
inference,
|
50 |
+
gr.inputs.Image(type="pil", label="Input"),
|
51 |
+
gr.outputs.Image(type="plot", label="Output"),
|
52 |
+
title=title,
|
53 |
+
description=description,
|
54 |
+
article=article,
|
55 |
+
examples=[
|
56 |
+
["dog.jpg"]
|
57 |
+
]).launch()
|