Spaces:
Runtime error
Runtime error
File size: 7,305 Bytes
6c016cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# --------------------------------------------------------
# Set-of-Mark (SoM) Prompting for Visual Grounding in GPT-4V
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by:
# Jianwei Yang (jianwyan@microsoft.com)
# Xueyan Zou (xueyan@cs.wisc.edu)
# Hao Zhang (hzhangcx@connect.ust.hk)
# --------------------------------------------------------
import gradio as gr
import torch
import argparse
# seem
from seem.modeling.BaseModel import BaseModel as BaseModel_Seem
from seem.utils.distributed import init_distributed as init_distributed_seem
from seem.modeling import build_model as build_model_seem
from task_adapter.seem.tasks import interactive_seem_m2m_auto, inference_seem_pano, inference_seem_interactive
# semantic sam
from semantic_sam.BaseModel import BaseModel
from semantic_sam import build_model
from semantic_sam.utils.dist import init_distributed_mode
from semantic_sam.utils.arguments import load_opt_from_config_file
from semantic_sam.utils.constants import COCO_PANOPTIC_CLASSES
from task_adapter.semantic_sam.tasks import inference_semsam_m2m_auto, prompt_switch
# sam
from segment_anything import sam_model_registry
from task_adapter.sam.tasks.inference_sam_m2m_auto import inference_sam_m2m_auto
from task_adapter.sam.tasks.inference_sam_m2m_interactive import inference_sam_m2m_interactive
from scipy.ndimage import label
import numpy as np
'''
build args
'''
semsam_cfg = "configs/semantic_sam_only_sa-1b_swinL.yaml"
seem_cfg = "configs/seem_focall_unicl_lang_v1.yaml"
semsam_ckpt = "./swinl_only_sam_many2many.pth"
sam_ckpt = "./sam_vit_h_4b8939.pth"
seem_ckpt = "./seem_focall_v1.pt"
opt_semsam = load_opt_from_config_file(semsam_cfg)
opt_seem = load_opt_from_config_file(seem_cfg)
opt_seem = init_distributed_seem(opt_seem)
'''
build model
'''
model_semsam = BaseModel(opt_semsam, build_model(opt_semsam)).from_pretrained(semsam_ckpt).eval().cuda()
model_sam = sam_model_registry["vit_h"](checkpoint=sam_ckpt).eval().cuda()
model_seem = BaseModel_Seem(opt_seem, build_model_seem(opt_seem)).from_pretrained(seem_ckpt).eval().cuda()
with torch.no_grad():
with torch.autocast(device_type='cuda', dtype=torch.float16):
model_seem.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(COCO_PANOPTIC_CLASSES + ["background"], is_eval=True)
@torch.no_grad()
def inference(image, slider, mode, alpha, label_mode, anno_mode, *args, **kwargs):
_image = image['background'].convert('RGB')
_mask = image['layers'][0].convert('L') if image['layers'] else None
if slider < 1.5:
model_name = 'seem'
elif slider > 2.5:
model_name = 'sam'
else:
if mode == 'Automatic':
model_name = 'semantic-sam'
if slider < 1.5 + 0.14:
level = [1]
elif slider < 1.5 + 0.28:
level = [2]
elif slider < 1.5 + 0.42:
level = [3]
elif slider < 1.5 + 0.56:
level = [4]
elif slider < 1.5 + 0.70:
level = [5]
elif slider < 1.5 + 0.84:
level = [6]
else:
level = [6, 1, 2, 3, 4, 5]
else:
model_name = 'sam'
if label_mode == 'Alphabet':
label_mode = 'a'
else:
label_mode = '1'
text_size, hole_scale, island_scale=640,100,100
text, text_part, text_thresh = '','','0.0'
with torch.autocast(device_type='cuda', dtype=torch.float16):
semantic=False
if mode == "Interactive":
labeled_array, num_features = label(np.asarray(_mask))
spatial_masks = torch.stack([torch.from_numpy(labeled_array == i+1) for i in range(num_features)])
if model_name == 'semantic-sam':
model = model_semsam
output, mask = inference_semsam_m2m_auto(model, _image, level, text, text_part, text_thresh, text_size, hole_scale, island_scale, semantic, label_mode=label_mode, alpha=alpha, anno_mode=anno_mode, *args, **kwargs)
elif model_name == 'sam':
model = model_sam
if mode == "Automatic":
output, mask = inference_sam_m2m_auto(model, _image, text_size, label_mode, alpha, anno_mode)
elif mode == "Interactive":
output, mask = inference_sam_m2m_interactive(model, _image, spatial_masks, text_size, label_mode, alpha, anno_mode)
elif model_name == 'seem':
model = model_seem
if mode == "Automatic":
output, mask = inference_seem_pano(model, _image, text_size, label_mode, alpha, anno_mode)
elif mode == "Interactive":
output, mask = inference_seem_interactive(model, _image, spatial_masks, text_size, label_mode, alpha, anno_mode)
return output
'''
launch app
'''
demo = gr.Blocks()
image = gr.ImageMask(label="Input", type="pil", sources=["upload"], interactive=True, brush=gr.Brush(colors=["#FFFFFF"]))
slider = gr.Slider(1, 3, value=2, label="Granularity", info="Choose in [1, 1.5), [1.5, 2.5), [2.5, 3] for [seem, semantic-sam (multi-level), sam]")
mode = gr.Radio(['Automatic', 'Interactive', ], value='Automatic', label="Segmentation Mode")
image_out = gr.Image(label="Auto generation",type="pil")
runBtn = gr.Button("Run")
slider_alpha = gr.Slider(0, 1, value=0.1, label="Mask Alpha", info="Choose in [0, 1]")
label_mode = gr.Radio(['Number', 'Alphabet'], value='Number', label="Mark Mode")
anno_mode = gr.CheckboxGroup(choices=["Mask", "Box", "Mark"], value=['Mask', 'Mark'], label="Annotation Mode")
title = "Set-of-Mark (SoM) Prompting for Visual Grounding in GPT-4V"
description = "This is a demo for SoM Prompting to unleash extraordinary visual grounding in GPT-4V. Please upload an image and them click the 'Run' button to get the image with marks. Then try it on <a href='https://chat.openai.com/'>GPT-4V<a>!"
with demo:
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
gr.Markdown("<h3 style='text-align: center; margin-bottom: 1rem'>project: <a href='https://som-gpt4v.github.io/'>link</a>, arXiv: <a href='https://arxiv.org/abs/2310.11441'>link</a>, code: <a href='https://github.com/microsoft/SoM'>link</a></h3>")
gr.Markdown(f"<h3 style='margin-bottom: 1rem'>{description}</h3>")
with gr.Row():
with gr.Column():
image.render()
slider.render()
with gr.Row():
mode.render()
anno_mode.render()
with gr.Row():
slider_alpha.render()
label_mode.render()
with gr.Column():
image_out.render()
runBtn.render()
with gr.Row():
example = gr.Examples(
examples=[
["examples/ironing_man.jpg"],
],
inputs=image,
cache_examples=False,
)
example = gr.Examples(
examples=[
["examples/ironing_man_som.png"],
],
inputs=image,
cache_examples=False,
label='Marked Examples',
)
runBtn.click(inference, inputs=[image, slider, mode, slider_alpha, label_mode, anno_mode],
outputs = image_out)
demo.queue().launch(share=True,server_port=6092)
|