Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import cv2
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
# Load model and processor
|
| 8 |
+
mix_model_id = "google/paligemma-3b-mix-224"
|
| 9 |
+
mix_model = PaliGemmaForConditionalGeneration.from_pretrained(mix_model_id)
|
| 10 |
+
mix_processor = AutoProcessor.from_pretrained(mix_model_id)
|
| 11 |
+
|
| 12 |
+
# Define function to extract frames from the video
|
| 13 |
+
def extract_frames(video_path, frame_interval=1):
|
| 14 |
+
# Open the video file
|
| 15 |
+
vidcap = cv2.VideoCapture(video_path)
|
| 16 |
+
frames = []
|
| 17 |
+
success, image = vidcap.read()
|
| 18 |
+
count = 0
|
| 19 |
+
|
| 20 |
+
while success:
|
| 21 |
+
# Capture a frame at the specified interval
|
| 22 |
+
if count % frame_interval == 0:
|
| 23 |
+
frames.append(image)
|
| 24 |
+
success, image = vidcap.read()
|
| 25 |
+
count += 1
|
| 26 |
+
|
| 27 |
+
vidcap.release()
|
| 28 |
+
return frames
|
| 29 |
+
|
| 30 |
+
# Define function to generate captions for a video
|
| 31 |
+
def process_video(video, prompt):
|
| 32 |
+
# Use video directly as the path (video is passed as a string)
|
| 33 |
+
frames = extract_frames(video, frame_interval=10) # Extract frames at intervals
|
| 34 |
+
|
| 35 |
+
captions = []
|
| 36 |
+
|
| 37 |
+
for frame in frames:
|
| 38 |
+
# Convert frame to PIL Image and process it (assuming mix_processor handles PIL Image)
|
| 39 |
+
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 40 |
+
inputs = mix_processor(image.convert("RGB"), prompt, return_tensors="pt")
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
# Generate output from the model for each frame
|
| 44 |
+
output = mix_model.generate(**inputs, max_new_tokens=20)
|
| 45 |
+
|
| 46 |
+
# Decode and store the output for the frame
|
| 47 |
+
decoded_output = mix_processor.decode(output[0], skip_special_tokens=True)
|
| 48 |
+
captions.append(decoded_output[len(prompt):]) # Remove prompt part from the output
|
| 49 |
+
except IndexError as e:
|
| 50 |
+
print(f"IndexError: {e}")
|
| 51 |
+
captions.append("Error processing frame")
|
| 52 |
+
|
| 53 |
+
# Combine all frame captions into a coherent video description
|
| 54 |
+
return " ".join(captions)
|
| 55 |
+
|
| 56 |
+
# Define Gradio interface for video captioning
|
| 57 |
+
inputs = [
|
| 58 |
+
gr.Video(label="Upload Video"),
|
| 59 |
+
gr.Textbox(label="Prompt", placeholder="Enter your question")
|
| 60 |
+
]
|
| 61 |
+
outputs = gr.Textbox(label="Generated Caption")
|
| 62 |
+
|
| 63 |
+
# Create the Gradio app for video captioning
|
| 64 |
+
demo = gr.Interface(fn=process_video, inputs=inputs, outputs=outputs, title="Video Captioning with Mix PaliGemma Model",
|
| 65 |
+
description="Upload a video and get captions based on your prompt.")
|
| 66 |
+
|
| 67 |
+
# Launch the app
|
| 68 |
+
demo.launch(debug=True)
|