Spaces:
Sleeping
Sleeping
| # %pip install llama-index llama-index-vector-stores-lancedb | |
| # %pip install lancedb==0.6.13 #Only required if the above cell installs an older version of lancedb (pypi package may not be released yet) | |
| # %pip install llama-index-embeddings-fastembed | |
| # pip install llama-index-readers-file | |
| from llama_index.core import Settings, SimpleDirectoryReader, VectorStoreIndex | |
| from llama_index.vector_stores.lancedb import LanceDBVectorStore | |
| from llama_index.embeddings.fastembed import FastEmbedEmbedding | |
| # Configure global settings | |
| Settings.embed_model = FastEmbedEmbedding(model_name="BAAI/bge-small-en-v1.5") | |
| # Setup LanceDB vector store | |
| vector_store = LanceDBVectorStore( | |
| uri="./lancedb", | |
| mode="overwrite", | |
| query_type="vector" | |
| ) | |
| # Load your documents | |
| documents = SimpleDirectoryReader("D:\DEV\LIZMOTORS\LANGCHAIN\digiyatrav2\chatbot\data").load_data() | |
| # Create the index | |
| index = VectorStoreIndex.from_documents( | |
| documents, | |
| vector_store=vector_store | |
| ) | |
| # Create a retriever | |
| retriever = index.as_retriever() | |
| response = retriever.retrieve("Your query here") | |
| print(response) |