File size: 7,461 Bytes
5026e83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21042da
 
5026e83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from transformers import T5Tokenizer,T5ForConditionalGeneration
import torch 
import lightning as L 
import numpy as np 
import random

import gradio as gr 

MODEL_NAME:str = "google/flan-t5-small"

def load_tokenizer(tokenizer_path:str):
    tokenizer = T5Tokenizer.from_pretrained(tokenizer_path,local_files_only=True)
    return tokenizer 

def qa_preprocess_data(context:str, tokenizer:T5Tokenizer):
    input_prefix:str = "Generate relevant question and answer for this paragraph:\n "
    inputs = input_prefix + context 
    model_inputs:torch.Tensor = tokenizer(inputs,return_tensors="pt")
    return model_inputs

def distractor_preprocess_data(context:str,question:str,
                               answer:str,tokenizer:T5Tokenizer):
    
    input_prefix:str = "Generate 3 plausible but incorrect answer options (distractors) for the given question and correct answer, based on the provided context:"
    inputs = f"{input_prefix}\nCONTEXT:\n{context}\nQUESTION:  {question}\nANSWER:  {answer}"
    model_inputs:torch.Tensor = tokenizer(inputs,return_tensors="pt")
    return model_inputs


class DistractorTrained(L.LightningModule):
  def __init__(self):
    super().__init__()
    self.model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME)


  def forward(self,input_ids,attention_mask):
    return self.model.generate(input_ids=input_ids, attention_mask=attention_mask,
                               num_beams=4,max_new_tokens=80,
                               do_sample=True,temperature=1.2)

class QATrained(L.LightningModule):
    def __init__(self):
        super().__init__()
        self.model  = T5ForConditionalGeneration.from_pretrained(MODEL_NAME)

    def forward(self,input_ids:torch.Tensor,attention_mask:torch.Tensor,
                num_beams:int=4,max_new_tokens:int=65,
                temperature:float=1.2):

        return self.model.generate(
            input_ids=input_ids,attention_mask=attention_mask,
            num_beams=num_beams,max_new_tokens=65,
            do_sample=True,temperature=temperature
        )
    

def load_qa_model(model_path:str):
    model = QATrained.load_from_checkpoint(model_path)
    return model 

def load_distractor_model(model_path:str):
    model = DistractorTrained.load_from_checkpoint(model_path)
    return model

def predict_qa(model:QATrained,tokenizer:T5Tokenizer,model_inputs:torch.Tensor,
            device:str="cpu"):
    model.to(device)
    model.eval()
    with torch.inference_mode():
        generated_ids = model(input_ids=model_inputs["input_ids"].to(device),
                              attention_mask = model_inputs["attention_mask"].to(device))
        
    generated_ids = generated_ids.cpu()
    decoded_predictions = [tokenizer.decode(ids,skip_special_tokens=True) for ids in generated_ids]

    return decoded_predictions

def predict_distractor(model:DistractorTrained,tokenizer:T5Tokenizer,
                       model_inputs:torch.Tensor,device:str="cpu"):
    model.to(device)
    model.eval()
    with torch.inference_mode():
        generated_ids = model(input_ids=model_inputs["input_ids"].to(device),
                              attention_mask = model_inputs["attention_mask"].to(device))
        
    generated_ids = generated_ids.cpu()

    decoded_predictions = [tokenizer.decode(ids,skip_special_tokens=True) for ids in generated_ids]

    return decoded_predictions

    
def main(user_input):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    tokenizer_path:str = "./t5_tokenizer"
    qa_model_path:str = "./qa-t5-small.ckpt"
    distractor_model_path:str = "./distractor_t5-small.ckpt"
    tokenizer = load_tokenizer(tokenizer_path)
    qa_model = load_qa_model(qa_model_path)
    distractor_model = load_distractor_model(distractor_model_path)
    qa_model_inputs = qa_preprocess_data(user_input,tokenizer)
    qa_decoded_predictions = predict_qa(qa_model,tokenizer,qa_model_inputs,device=device)
    qa_decoded_predictions = qa_decoded_predictions[0]
    indices = []
    start = 0 

    while True:
        index = qa_decoded_predictions.find("[ANSWER] ",start)

        if index==-1:
            break
        indices.append(index)
        start = index + 1

    question = qa_decoded_predictions[11:indices[0]].rstrip()
    
    if len(indices)==1:
        answer = qa_decoded_predictions[indices[0]+9:].rstrip()

    if len(indices)>1:
        answer = qa_decoded_predictions[indices[0]+9:indices[1]-1].rstrip()

    filtered_ans = answer.replace("?",".")
    
    distractor_model_inputs = distractor_preprocess_data(user_input,question,filtered_ans,tokenizer)
    distractor_decoded_predictions = predict_distractor(distractor_model,tokenizer,distractor_model_inputs,device=device)

    distractor_decoded_predictions = distractor_decoded_predictions[0]

    option_strings = ["[OPTION 1]","[OPTION 2]","[OPTION 3]"]
    
    option_indices:list[int] = []

    for option in option_strings:
        ind:int = distractor_decoded_predictions.find(option)
        option_indices.append(ind)

    for option in option_strings:
        option1:str = distractor_decoded_predictions[11:option_indices[1]].replace(option,"").strip()  
        option2:str = distractor_decoded_predictions[option_indices[1]+10:option_indices[-1]].replace(option,"").strip()
        option3:str = distractor_decoded_predictions[option_indices[1]+10:].replace(option,"").strip()

    option4:str = answer

    return {"question": question,
        "option1": option1,
        "option2": option2,
        "option3": option3,
        "option4": option4}

def shuffle_options(question_data):
    options = [
        question_data["option1"],
        question_data["option2"],
        question_data["option3"],
        question_data["option4"]
    ]
    correct_answer = question_data["option4"]
    random.shuffle(options)
    return options, correct_answer

def process_input(context):
    question_data = main(context)
    options, correct_answer = shuffle_options(question_data)
    return question_data["question"], options, correct_answer

def check_answer(choice, correct_answer):
    if choice == correct_answer:
        return f'<p style="color: #28a745;">Correct!</p>'
    else:
        return f'<p style="color: #dc3545;">Incorrect ! Try again.</p>'

with gr.Blocks() as demo:
    gr.Markdown("# MCQ Generator")
    
    with gr.Row():
        context_input = gr.Textbox(label="Context Paragraph", lines=5)
        generate_button = gr.Button("Generate Question")
    
    question_output = gr.Textbox(label="Question")
    options_radio = gr.Radio(label="Options", choices=[])
    submit_button = gr.Button("Submit Answer")
    result_output = gr.HTML()
    correct_answer = gr.State()

    def update_interface(question, options, correct):
        return {
            question_output: question,
            options_radio: gr.Radio(choices=options, label="Options"),
            correct_answer: correct
        }

    generate_button.click(
        process_input,
        inputs=[context_input],
        outputs=[question_output, options_radio, correct_answer]
    ).then(
        update_interface,
        inputs=[question_output, options_radio, correct_answer],
        outputs=[question_output, options_radio, correct_answer]
    )

    submit_button.click(
        check_answer,
        inputs=[options_radio, correct_answer],
        outputs=[result_output]
    )

if __name__=="__main__":
    demo.launch(debug=True)