File size: 16,280 Bytes
f2fa83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import os
import time
import shutil

import torch
import cv2
import torch.optim as optim
import numpy as np
from glob import glob
from torch.cuda.amp import GradScaler, autocast
from torch.nn.parallel.distributed import DistributedDataParallel
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
from utils.image_processing import denormalize_input, preprocess_images, resize_image
from losses import LossSummary, AnimeGanLoss, to_gray_scale
from utils import load_checkpoint, save_checkpoint, read_image
from utils.common import set_lr
from color_transfer import color_transfer_pytorch


def transfer_color_and_rescale(src, target):
    """Transfer color from src image to target then rescale to [-1, 1]"""
    out = color_transfer_pytorch(src, target)  # [0, 1]
    out = (out / 0.5) - 1
    return out 

def gaussian_noise():
    gaussian_mean = torch.tensor(0.0)
    gaussian_std = torch.tensor(0.1)
    return torch.normal(gaussian_mean, gaussian_std)

def convert_to_readable(seconds):
    return time.strftime('%H:%M:%S', time.gmtime(seconds))


def revert_to_np_image(image_tensor):
    image = image_tensor.cpu().numpy()
    # CHW
    image = image.transpose(1, 2, 0)
    image = denormalize_input(image, dtype=np.int16)
    return image[..., ::-1]  # to RGB


def save_generated_images(images: torch.Tensor, save_dir: str):
    """Save generated images `(*, 3, H, W)` range [-1, 1] into disk"""
    os.makedirs(save_dir, exist_ok=True)
    images = images.clone().detach().cpu().numpy()
    images = images.transpose(0, 2, 3, 1)
    n_images = len(images)

    for i in range(n_images):
        img = images[i]
        img = denormalize_input(img, dtype=np.int16)
        img = img[..., ::-1]
        cv2.imwrite(os.path.join(save_dir, f"G{i}.jpg"), img)


class DDPTrainer:
    def _init_distributed(self):
        if self.cfg.ddp:
            self.logger.info("Setting up DDP")
            self.pg = torch.distributed.init_process_group(
                backend="nccl",
                rank=self.cfg.local_rank,
                world_size=self.cfg.world_size
            )
            self.G = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.G, self.pg)
            self.D = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.D, self.pg)
            torch.cuda.set_device(self.cfg.local_rank)
            self.G.cuda(self.cfg.local_rank)
            self.D.cuda(self.cfg.local_rank)
            self.logger.info("Setting up DDP Done")

    def _init_amp(self, enabled=False):
        # self.scaler = torch.cuda.amp.GradScaler(enabled=enabled, growth_interval=100)
        self.scaler_g = GradScaler(enabled=enabled)
        self.scaler_d = GradScaler(enabled=enabled)
        if self.cfg.ddp:
            self.G = DistributedDataParallel(
                self.G, device_ids=[self.cfg.local_rank],
                output_device=self.cfg.local_rank,
                find_unused_parameters=False)
            
            self.D = DistributedDataParallel(
                self.D, device_ids=[self.cfg.local_rank],
                output_device=self.cfg.local_rank,
                find_unused_parameters=False)
            self.logger.info("Set DistributedDataParallel")


class Trainer(DDPTrainer):
    """
    Base Trainer class
    """

    def __init__(
        self,
        generator,
        discriminator,
        config,
        logger,
    ) -> None:
        self.G = generator
        self.D = discriminator
        self.cfg = config
        self.max_norm = 10
        self.device_type = 'cuda' if self.cfg.device.startswith('cuda') else 'cpu'
        self.optimizer_g = optim.Adam(self.G.parameters(), lr=self.cfg.lr_g, betas=(0.5, 0.999))
        self.optimizer_d = optim.Adam(self.D.parameters(), lr=self.cfg.lr_d, betas=(0.5, 0.999))
        self.loss_tracker = LossSummary()
        if self.cfg.ddp:
            self.device = torch.device(f"cuda:{self.cfg.local_rank}")
            logger.info(f"---------{self.cfg.local_rank} {self.device}")
        else:
            self.device = torch.device(self.cfg.device)
        self.loss_fn = AnimeGanLoss(self.cfg, self.device, self.cfg.gray_adv)
        self.logger = logger
        self._init_working_dir()
        self._init_distributed()
        self._init_amp(enabled=self.cfg.amp)

    def _init_working_dir(self):
        """Init working directory for saving checkpoint, ..."""
        os.makedirs(self.cfg.exp_dir, exist_ok=True)
        Gname = self.G.name
        Dname = self.D.name
        self.checkpoint_path_G_init = os.path.join(self.cfg.exp_dir, f"{Gname}_init.pt")
        self.checkpoint_path_G = os.path.join(self.cfg.exp_dir, f"{Gname}.pt")
        self.checkpoint_path_D = os.path.join(self.cfg.exp_dir, f"{Dname}.pt")
        self.save_image_dir = os.path.join(self.cfg.exp_dir, "generated_images")
        self.example_image_dir = os.path.join(self.cfg.exp_dir, "train_images")
        os.makedirs(self.save_image_dir, exist_ok=True)
        os.makedirs(self.example_image_dir, exist_ok=True)

    def init_weight_G(self, weight: str):
        """Init Generator weight"""
        return load_checkpoint(self.G, weight)

    def init_weight_D(self, weight: str):
        """Init Discriminator weight"""
        return load_checkpoint(self.D, weight)

    def pretrain_generator(self, train_loader, start_epoch):
        """
        Pretrain Generator to recontruct input image.
        """
        init_losses = []
        set_lr(self.optimizer_g, self.cfg.init_lr)
        for epoch in range(start_epoch, self.cfg.init_epochs):
            # Train with content loss only
            
            pbar = tqdm(train_loader)
            for data in pbar:
                img = data["image"].to(self.device)

                self.optimizer_g.zero_grad()

                with autocast(enabled=self.cfg.amp):
                    fake_img = self.G(img)
                    loss = self.loss_fn.content_loss_vgg(img, fake_img)

                self.scaler_g.scale(loss).backward()
                self.scaler_g.step(self.optimizer_g)
                self.scaler_g.update()

                if self.cfg.ddp:
                    torch.distributed.barrier()

                init_losses.append(loss.cpu().detach().numpy())
                avg_content_loss = sum(init_losses) / len(init_losses)
                pbar.set_description(f'[Init Training G] content loss: {avg_content_loss:2f}')

            save_checkpoint(self.G, self.checkpoint_path_G_init, self.optimizer_g, epoch)
            if self.cfg.local_rank == 0:
                self.generate_and_save(self.cfg.test_image_dir, subname='initg')
                self.logger.info(f"Epoch {epoch}/{self.cfg.init_epochs}")

        set_lr(self.optimizer_g, self.cfg.lr_g)

    def train_epoch(self, epoch, train_loader):
        pbar = tqdm(train_loader, total=len(train_loader))
        for data in pbar:
            img = data["image"].to(self.device)
            anime = data["anime"].to(self.device)
            anime_gray = data["anime_gray"].to(self.device)
            anime_smt_gray = data["smooth_gray"].to(self.device)

            # ---------------- TRAIN D ---------------- #
            self.optimizer_d.zero_grad()

            with autocast(enabled=self.cfg.amp):
                fake_img = self.G(img)
                # Add some Gaussian noise to images before feeding to D
                if self.cfg.d_noise:
                    fake_img += gaussian_noise()
                    anime += gaussian_noise()
                    anime_gray += gaussian_noise()
                    anime_smt_gray += gaussian_noise()

                if self.cfg.gray_adv:
                    fake_img = to_gray_scale(fake_img)

                fake_d = self.D(fake_img)
                real_anime_d = self.D(anime)
                real_anime_gray_d = self.D(anime_gray)
                real_anime_smt_gray_d = self.D(anime_smt_gray)

                loss_d = self.loss_fn.compute_loss_D(
                    fake_d,
                    real_anime_d,
                    real_anime_gray_d,
                    real_anime_smt_gray_d
                )

            self.scaler_d.scale(loss_d).backward()
            self.scaler_d.unscale_(self.optimizer_d)
            torch.nn.utils.clip_grad_norm_(self.D.parameters(), max_norm=self.max_norm)
            self.scaler_d.step(self.optimizer_d)
            self.scaler_d.update()
            if self.cfg.ddp:
                torch.distributed.barrier()
            self.loss_tracker.update_loss_D(loss_d)

            # ---------------- TRAIN G ---------------- #
            self.optimizer_g.zero_grad()

            with autocast(enabled=self.cfg.amp):
                fake_img = self.G(img)
                
                if self.cfg.gray_adv:
                    fake_d = self.D(to_gray_scale(fake_img))
                else:
                    fake_d = self.D(fake_img)

                (
                    adv_loss, con_loss,
                    gra_loss, col_loss,
                    tv_loss
                ) = self.loss_fn.compute_loss_G(
                    fake_img,
                    img,
                    fake_d,
                    anime_gray,
                )
                loss_g = adv_loss + con_loss + gra_loss + col_loss + tv_loss
                if torch.isnan(adv_loss).any():
                    self.logger.info("----------------------------------------------")
                    self.logger.info(fake_d)
                    self.logger.info(adv_loss)
                    self.logger.info("----------------------------------------------")
                    raise ValueError("NAN loss!!")

            self.scaler_g.scale(loss_g).backward()
            self.scaler_d.unscale_(self.optimizer_g)
            grad = torch.nn.utils.clip_grad_norm_(self.G.parameters(), max_norm=self.max_norm)
            self.scaler_g.step(self.optimizer_g)
            self.scaler_g.update()
            if self.cfg.ddp:
                torch.distributed.barrier()

            self.loss_tracker.update_loss_G(adv_loss, gra_loss, col_loss, con_loss)
            pbar.set_description(f"{self.loss_tracker.get_loss_description()} - {grad:.3f}")

    def get_train_loader(self, dataset):
        if self.cfg.ddp:
            train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
        else:
            train_sampler = None
        return DataLoader(
            dataset,
            batch_size=self.cfg.batch_size,
            num_workers=self.cfg.num_workers,
            pin_memory=True,
            shuffle=train_sampler is None,
            sampler=train_sampler,
            drop_last=True,
            # collate_fn=collate_fn,
        )

    def maybe_increase_imgsz(self, epoch, train_dataset):
        """
        Increase image size at specific epoch
            + 50% epochs train at imgsz[0]
            + the rest 50% will increase every `len(epochs) / 2 / (len(imgsz) - 1)`

        Args:
            epoch: Current epoch
            train_dataset: Dataset

        Examples:
        ```    
        epochs = 100
        imgsz = [256, 352, 416, 512]
        => [(0, 256), (50, 352), (66, 416), (82, 512)]
        ```
        """
        epochs = self.cfg.epochs
        imgsz = self.cfg.imgsz
        num_size_remains = len(imgsz) - 1
        half_epochs = epochs // 2

        if len(imgsz) == 1:
            new_size = imgsz[0]
        elif epoch < half_epochs:
            new_size = imgsz[0]
        else:
            per_epoch_increment = int(half_epochs / num_size_remains)
            found = None
            for i, size in enumerate(imgsz[:]):
                if epoch < half_epochs + per_epoch_increment * i:
                    found = size
                    break
            if not found:
                found = imgsz[-1]
            new_size = found

        self.logger.info(f"Check {imgsz}, {new_size}, {train_dataset.imgsz}")
        if new_size != train_dataset.imgsz:
            train_dataset.set_imgsz(new_size)
            self.logger.info(f"Increase image size to {new_size} at epoch {epoch}")

    def train(self, train_dataset: Dataset, start_epoch=0, start_epoch_g=0):
        """
        Train Generator and Discriminator.
        """
        self.logger.info(self.device)
        self.G.to(self.device)
        self.D.to(self.device)

        self.pretrain_generator(self.get_train_loader(train_dataset), start_epoch_g)

        if self.cfg.local_rank == 0:
            self.logger.info(f"Start training for {self.cfg.epochs} epochs")

        for i, data in enumerate(train_dataset):
            for k in data.keys():
                image = data[k]
                cv2.imwrite(
                    os.path.join(self.example_image_dir, f"data_{k}_{i}.jpg"),
                    revert_to_np_image(image)
                )
            if i == 2:
                break

        end = None
        num_iter = 0
        per_epoch_times = []
        for epoch in range(start_epoch, self.cfg.epochs):
            self.maybe_increase_imgsz(epoch, train_dataset)

            start = time.time()
            self.train_epoch(epoch, self.get_train_loader(train_dataset))

            if epoch % self.cfg.save_interval == 0 and self.cfg.local_rank == 0:
                save_checkpoint(self.G, self.checkpoint_path_G,self.optimizer_g, epoch)
                save_checkpoint(self.D, self.checkpoint_path_D, self.optimizer_d, epoch)
                self.generate_and_save(self.cfg.test_image_dir)

                if epoch % 10 == 0:
                    self.copy_results(epoch)

            num_iter += 1

            if self.cfg.local_rank == 0:
                end = time.time()
                if end is None:
                    eta = 9999
                else:
                    per_epoch_time = (end - start)
                    per_epoch_times.append(per_epoch_time)
                    eta = np.mean(per_epoch_times) * (self.cfg.epochs - epoch)
                    eta = convert_to_readable(eta)
                self.logger.info(f"epoch {epoch}/{self.cfg.epochs}, ETA: {eta}")

    def generate_and_save(
        self,
        image_dir,
        max_imgs=15,
        subname='gen'
    ):
        '''
        Generate and save images
        '''
        start = time.time()
        self.G.eval()

        max_iter = max_imgs
        fake_imgs = []
        real_imgs = []
        image_files = glob(os.path.join(image_dir, "*"))

        for i, image_file in enumerate(image_files):
            image = read_image(image_file)
            image = resize_image(image)
            real_imgs.append(image.copy())
            image = preprocess_images(image)
            image = image.to(self.device)
            with torch.no_grad():
                with autocast(enabled=self.cfg.amp):
                    fake_img = self.G(image)
                    # fake_img = to_gray_scale(fake_img)
                fake_img = fake_img.detach().cpu().numpy()
                # Channel first -> channel last
                fake_img  = fake_img.transpose(0, 2, 3, 1)
                fake_imgs.append(denormalize_input(fake_img, dtype=np.int16)[0])

            if i + 1 == max_iter:
                break

        # fake_imgs = np.concatenate(fake_imgs, axis=0)

        for i, (real_img, fake_img) in enumerate(zip(real_imgs, fake_imgs)):
            img = np.concatenate((real_img, fake_img), axis=1)  # Concate aross width
            save_path = os.path.join(self.save_image_dir, f'{subname}_{i}.jpg')
            if not cv2.imwrite(save_path, img[..., ::-1]):
                self.logger.info(f"Save generated image failed, {save_path}, {img.shape}")
        elapsed = time.time() - start
        self.logger.info(f"Generated {len(fake_imgs)} images in {elapsed:.3f}s.")

    def copy_results(self, epoch):
        """Copy result (Weight + Generated images) to each epoch folder
        Every N epoch
        """
        copy_dir = os.path.join(self.cfg.exp_dir, f"epoch_{epoch}")
        os.makedirs(copy_dir, exist_ok=True)

        shutil.copy2(
            self.checkpoint_path_G,
            copy_dir
        )

        dest = os.path.join(copy_dir, os.path.basename(self.save_image_dir))
        shutil.copytree(
            self.save_image_dir,
            dest,
            dirs_exist_ok=True
        )