Spaces:
Running
Running
File size: 8,464 Bytes
f2fa83b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import torch
import torch.nn.functional as F
import torch.nn as nn
from models.vgg import Vgg19
from utils.image_processing import gram
def to_gray_scale(image):
# https://github.com/pytorch/vision/blob/main/torchvision/transforms/v2/functional/_color.py#L33
# Image are assum in range 1, -1
image = (image + 1.0) / 2.0 # To [0, 1]
r, g, b = image.unbind(dim=-3)
l_img = r.mul(0.2989).add_(g, alpha=0.587).add_(b, alpha=0.114)
l_img = l_img.unsqueeze(dim=-3)
l_img = l_img.to(image.dtype)
l_img = l_img.expand(image.shape)
l_img = l_img / 0.5 - 1.0 # To [-1, 1]
return l_img
class ColorLoss(nn.Module):
def __init__(self):
super(ColorLoss, self).__init__()
self.l1 = nn.L1Loss()
self.huber = nn.SmoothL1Loss()
# self._rgb_to_yuv_kernel = torch.tensor([
# [0.299, -0.14714119, 0.61497538],
# [0.587, -0.28886916, -0.51496512],
# [0.114, 0.43601035, -0.10001026]
# ]).float()
self._rgb_to_yuv_kernel = torch.tensor([
[0.299, 0.587, 0.114],
[-0.14714119, -0.28886916, 0.43601035],
[0.61497538, -0.51496512, -0.10001026],
]).float()
def to(self, device):
new_self = super(ColorLoss, self).to(device)
new_self._rgb_to_yuv_kernel = new_self._rgb_to_yuv_kernel.to(device)
return new_self
def rgb_to_yuv(self, image):
'''
https://en.wikipedia.org/wiki/YUV
output: Image of shape (H, W, C) (channel last)
'''
# -1 1 -> 0 1
image = (image + 1.0) / 2.0
image = image.permute(0, 2, 3, 1) # To channel last
yuv_img = image @ self._rgb_to_yuv_kernel.T
return yuv_img
def forward(self, image, image_g):
image = self.rgb_to_yuv(image)
image_g = self.rgb_to_yuv(image_g)
# After convert to yuv, both images have channel last
return (
self.l1(image[:, :, :, 0], image_g[:, :, :, 0])
+ self.huber(image[:, :, :, 1], image_g[:, :, :, 1])
+ self.huber(image[:, :, :, 2], image_g[:, :, :, 2])
)
class AnimeGanLoss:
def __init__(self, args, device, gray_adv=False):
if isinstance(device, str):
device = torch.device(device)
self.content_loss = nn.L1Loss().to(device)
self.gram_loss = nn.L1Loss().to(device)
self.color_loss = ColorLoss().to(device)
self.wadvg = args.wadvg
self.wadvd = args.wadvd
self.wcon = args.wcon
self.wgra = args.wgra
self.wcol = args.wcol
self.wtvar = args.wtvar
# If true, use gray scale image to calculate adversarial loss
self.gray_adv = gray_adv
self.vgg19 = Vgg19().to(device).eval()
self.adv_type = args.gan_loss
self.bce_loss = nn.BCEWithLogitsLoss()
def compute_loss_G(self, fake_img, img, fake_logit, anime_gray):
'''
Compute loss for Generator
@Args:
- fake_img: generated image
- img: real image
- fake_logit: output of Discriminator given fake image
- anime_gray: grayscale of anime image
@Returns:
- Adversarial Loss of fake logits
- Content loss between real and fake features (vgg19)
- Gram loss between anime and fake features (Vgg19)
- Color loss between image and fake image
- Total variation loss of fake image
'''
fake_feat = self.vgg19(fake_img)
gray_feat = self.vgg19(anime_gray)
img_feat = self.vgg19(img)
# fake_gray_feat = self.vgg19(to_gray_scale(fake_img))
return [
# Want to be real image.
self.wadvg * self.adv_loss_g(fake_logit),
self.wcon * self.content_loss(img_feat, fake_feat),
self.wgra * self.gram_loss(gram(gray_feat), gram(fake_feat)),
self.wcol * self.color_loss(img, fake_img),
self.wtvar * self.total_variation_loss(fake_img)
]
def compute_loss_D(
self,
fake_img_d,
real_anime_d,
real_anime_gray_d,
real_anime_smooth_gray_d=None
):
if self.gray_adv:
# Treat gray scale image as real
return (
self.adv_loss_d_real(real_anime_gray_d)
+ self.adv_loss_d_fake(fake_img_d)
+ 0.3 * self.adv_loss_d_fake(real_anime_smooth_gray_d)
)
else:
return (
# Classify real anime as real
self.adv_loss_d_real(real_anime_d)
# Classify generated as fake
+ self.adv_loss_d_fake(fake_img_d)
# Classify real anime gray as fake
# + self.adv_loss_d_fake(real_anime_gray_d)
# Classify real anime as fake
# + 0.1 * self.adv_loss_d_fake(real_anime_smooth_gray_d)
)
def total_variation_loss(self, fake_img):
"""
A smooth loss in fact. Like the smooth prior in MRF.
V(y) = || y_{n+1} - y_n ||_2
"""
# Channel first -> channel last
fake_img = fake_img.permute(0, 2, 3, 1)
def _l2(x):
# sum(t ** 2) / 2
return torch.sum(x ** 2) / 2
dh = fake_img[:, :-1, ...] - fake_img[:, 1:, ...]
dw = fake_img[:, :, :-1, ...] - fake_img[:, :, 1:, ...]
return _l2(dh) / dh.numel() + _l2(dw) / dw.numel()
def content_loss_vgg(self, image, recontruction):
feat = self.vgg19(image)
re_feat = self.vgg19(recontruction)
feature_loss = self.content_loss(feat, re_feat)
content_loss = self.content_loss(image, recontruction)
return feature_loss# + 0.5 * content_loss
def adv_loss_d_real(self, pred):
"""Push pred to class 1 (real)"""
if self.adv_type == 'hinge':
return torch.mean(F.relu(1.0 - pred))
elif self.adv_type == 'lsgan':
# pred = torch.sigmoid(pred)
return torch.mean(torch.square(pred - 1.0))
elif self.adv_type == 'bce':
return self.bce_loss(pred, torch.ones_like(pred))
raise ValueError(f'Do not support loss type {self.adv_type}')
def adv_loss_d_fake(self, pred):
"""Push pred to class 0 (fake)"""
if self.adv_type == 'hinge':
return torch.mean(F.relu(1.0 + pred))
elif self.adv_type == 'lsgan':
# pred = torch.sigmoid(pred)
return torch.mean(torch.square(pred))
elif self.adv_type == 'bce':
return self.bce_loss(pred, torch.zeros_like(pred))
raise ValueError(f'Do not support loss type {self.adv_type}')
def adv_loss_g(self, pred):
"""Push pred to class 1 (real)"""
if self.adv_type == 'hinge':
return -torch.mean(pred)
elif self.adv_type == 'lsgan':
# pred = torch.sigmoid(pred)
return torch.mean(torch.square(pred - 1.0))
elif self.adv_type == 'bce':
return self.bce_loss(pred, torch.ones_like(pred))
raise ValueError(f'Do not support loss type {self.adv_type}')
class LossSummary:
def __init__(self):
self.reset()
def reset(self):
self.loss_g_adv = []
self.loss_content = []
self.loss_gram = []
self.loss_color = []
self.loss_d_adv = []
def update_loss_G(self, adv, gram, color, content):
self.loss_g_adv.append(adv.cpu().detach().numpy())
self.loss_gram.append(gram.cpu().detach().numpy())
self.loss_color.append(color.cpu().detach().numpy())
self.loss_content.append(content.cpu().detach().numpy())
def update_loss_D(self, loss):
self.loss_d_adv.append(loss.cpu().detach().numpy())
def avg_loss_G(self):
return (
self._avg(self.loss_g_adv),
self._avg(self.loss_gram),
self._avg(self.loss_color),
self._avg(self.loss_content),
)
def avg_loss_D(self):
return self._avg(self.loss_d_adv)
def get_loss_description(self):
avg_adv, avg_gram, avg_color, avg_content = self.avg_loss_G()
avg_adv_d = self.avg_loss_D()
return f'loss G: adv {avg_adv:2f} con {avg_content:2f} gram {avg_gram:2f} color {avg_color:2f} / loss D: {avg_adv_d:2f}'
@staticmethod
def _avg(losses):
return sum(losses) / len(losses)
|