Spaces:
Running
Running
File size: 13,607 Bytes
f2fa83b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import os
import time
import shutil
import torch
import cv2
import numpy as np
from models.anime_gan import GeneratorV1
from models.anime_gan_v2 import GeneratorV2
from models.anime_gan_v3 import GeneratorV3
from utils.common import load_checkpoint, RELEASED_WEIGHTS
from utils.image_processing import resize_image, normalize_input, denormalize_input
from utils import read_image, is_image_file, is_video_file
from tqdm import tqdm
from color_transfer import color_transfer_pytorch
try:
import matplotlib.pyplot as plt
except ImportError:
plt = None
try:
import moviepy.video.io.ffmpeg_writer as ffmpeg_writer
from moviepy.video.io.VideoFileClip import VideoFileClip
except ImportError:
ffmpeg_writer = None
VideoFileClip = None
def profile(func):
def wrap(*args, **kwargs):
started_at = time.time()
result = func(*args, **kwargs)
elapsed = time.time() - started_at
print(f"Processed in {elapsed:.3f}s")
return result
return wrap
def auto_load_weight(weight, version=None, map_location=None):
"""Auto load Generator version from weight."""
weight_name = os.path.basename(weight).lower()
if version is not None:
version = version.lower()
assert version in {"v1", "v2", "v3"}, f"Version {version} does not exist"
# If version is provided, use it.
cls = {
"v1": GeneratorV1,
"v2": GeneratorV2,
"v3": GeneratorV3
}[version]
else:
# Try to get class by name of weight file
# For convenenice, weight should start with classname
# e.g: Generatorv2_{anything}.pt
if weight_name in RELEASED_WEIGHTS:
version = RELEASED_WEIGHTS[weight_name][0]
return auto_load_weight(weight, version=version, map_location=map_location)
elif weight_name.startswith("generatorv2"):
cls = GeneratorV2
elif weight_name.startswith("generatorv3"):
cls = GeneratorV3
elif weight_name.startswith("generator"):
cls = GeneratorV1
else:
raise ValueError((f"Can not get Model from {weight_name}, "
"you might need to explicitly specify version"))
model = cls()
load_checkpoint(model, weight, strip_optimizer=True, map_location=map_location)
model.eval()
return model
class Predictor:
"""
Generic class for transfering Image to anime like image.
"""
def __init__(
self,
weight='hayao',
device='cuda',
amp=True,
retain_color=False,
imgsz=None,
):
if not torch.cuda.is_available():
device = 'cpu'
# Amp not working on cpu
amp = False
print("Use CPU device")
else:
print(f"Use GPU {torch.cuda.get_device_name()}")
self.imgsz = imgsz
self.retain_color = retain_color
self.amp = amp # Automatic Mixed Precision
self.device_type = 'cuda' if device.startswith('cuda') else 'cpu'
self.device = torch.device(device)
self.G = auto_load_weight(weight, map_location=device)
self.G.to(self.device)
def transform_and_show(
self,
image_path,
figsize=(18, 10),
save_path=None
):
image = resize_image(read_image(image_path))
anime_img = self.transform(image)
anime_img = anime_img.astype('uint8')
fig = plt.figure(figsize=figsize)
fig.add_subplot(1, 2, 1)
# plt.title("Input")
plt.imshow(image)
plt.axis('off')
fig.add_subplot(1, 2, 2)
# plt.title("Anime style")
plt.imshow(anime_img[0])
plt.axis('off')
plt.tight_layout()
plt.show()
if save_path is not None:
plt.savefig(save_path)
def transform(self, image, denorm=True):
'''
Transform a image to animation
@Arguments:
- image: np.array, shape = (Batch, width, height, channels)
@Returns:
- anime version of image: np.array
'''
with torch.no_grad():
image = self.preprocess_images(image)
# image = image.to(self.device)
# with autocast(self.device_type, enabled=self.amp):
# print(image.dtype, self.G)
fake = self.G(image)
# Transfer color of fake image look similiar color as image
if self.retain_color:
fake = color_transfer_pytorch(fake, image)
fake = (fake / 0.5) - 1.0 # remap to [-1. 1]
fake = fake.detach().cpu().numpy()
# Channel last
fake = fake.transpose(0, 2, 3, 1)
if denorm:
fake = denormalize_input(fake, dtype=np.uint8)
return fake
def read_and_resize(self, path, max_size=1536):
image = read_image(path)
_, ext = os.path.splitext(path)
h, w = image.shape[:2]
if self.imgsz is not None:
image = resize_image(image, width=self.imgsz)
elif max(h, w) > max_size:
print(f"Image {os.path.basename(path)} is too big ({h}x{w}), resize to max size {max_size}")
image = resize_image(
image,
width=max_size if w > h else None,
height=max_size if w < h else None,
)
cv2.imwrite(path.replace(ext, ".jpg"), image[:,:,::-1])
else:
image = resize_image(image)
# image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# image = np.stack([image, image, image], -1)
# cv2.imwrite(path.replace(ext, ".jpg"), image[:,:,::-1])
return image
@profile
def transform_file(self, file_path, save_path):
if not is_image_file(save_path):
raise ValueError(f"{save_path} is not valid")
image = self.read_and_resize(file_path)
anime_img = self.transform(image)[0]
cv2.imwrite(save_path, anime_img[..., ::-1])
print(f"Anime image saved to {save_path}")
return anime_img
@profile
def transform_gif(self, file_path, save_path, batch_size=4):
import imageio
def _preprocess_gif(img):
if img.shape[-1] == 4:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
return resize_image(img)
images = imageio.mimread(file_path)
images = np.stack([
_preprocess_gif(img)
for img in images
])
print(images.shape)
anime_gif = np.zeros_like(images)
for i in tqdm(range(0, len(images), batch_size)):
end = i + batch_size
anime_gif[i: end] = self.transform(
images[i: end]
)
if end < len(images) - 1:
# transform last frame
print("LAST", images[end: ].shape)
anime_gif[end:] = self.transform(images[end:])
print(anime_gif.shape)
imageio.mimsave(
save_path,
anime_gif,
)
print(f"Anime image saved to {save_path}")
@profile
def transform_in_dir(self, img_dir, dest_dir, max_images=0, img_size=(512, 512)):
'''
Read all images from img_dir, transform and write the result
to dest_dir
'''
os.makedirs(dest_dir, exist_ok=True)
files = os.listdir(img_dir)
files = [f for f in files if is_image_file(f)]
print(f'Found {len(files)} images in {img_dir}')
if max_images:
files = files[:max_images]
bar = tqdm(files)
for fname in bar:
path = os.path.join(img_dir, fname)
image = self.read_and_resize(path)
anime_img = self.transform(image)[0]
# anime_img = resize_image(anime_img, width=320)
ext = fname.split('.')[-1]
fname = fname.replace(f'.{ext}', '')
cv2.imwrite(os.path.join(dest_dir, f'{fname}.jpg'), anime_img[..., ::-1])
bar.set_description(f"{fname} {image.shape}")
def transform_video(self, input_path, output_path, batch_size=4, start=0, end=0):
'''
Transform a video to animation version
https://github.com/lengstrom/fast-style-transfer/blob/master/evaluate.py#L21
'''
if VideoFileClip is None:
raise ImportError("moviepy is not installed, please install with `pip install moviepy>=1.0.3`")
# Force to None
end = end or None
if not os.path.isfile(input_path):
raise FileNotFoundError(f'{input_path} does not exist')
output_dir = os.path.dirname(output_path)
if output_dir:
os.makedirs(output_dir, exist_ok=True)
is_gg_drive = '/drive/' in output_path
temp_file = ''
if is_gg_drive:
# Writing directly into google drive can be inefficient
temp_file = f'tmp_anime.{output_path.split(".")[-1]}'
def transform_and_write(frames, count, writer):
anime_images = self.transform(frames)
for i in range(0, count):
img = np.clip(anime_images[i], 0, 255)
writer.write_frame(img)
video_clip = VideoFileClip(input_path, audio=False)
if start or end:
video_clip = video_clip.subclip(start, end)
video_writer = ffmpeg_writer.FFMPEG_VideoWriter(
temp_file or output_path,
video_clip.size, video_clip.fps,
codec="libx264",
# preset="medium", bitrate="2000k",
ffmpeg_params=None)
total_frames = round(video_clip.fps * video_clip.duration)
print(f'Transfroming video {input_path}, {total_frames} frames, size: {video_clip.size}')
batch_shape = (batch_size, video_clip.size[1], video_clip.size[0], 3)
frame_count = 0
frames = np.zeros(batch_shape, dtype=np.float32)
for frame in tqdm(video_clip.iter_frames(), total=total_frames):
try:
frames[frame_count] = frame
frame_count += 1
if frame_count == batch_size:
transform_and_write(frames, frame_count, video_writer)
frame_count = 0
except Exception as e:
print(e)
break
# The last frames
if frame_count != 0:
transform_and_write(frames, frame_count, video_writer)
if temp_file:
# move to output path
shutil.move(temp_file, output_path)
print(f'Animation video saved to {output_path}')
video_writer.close()
def preprocess_images(self, images):
'''
Preprocess image for inference
@Arguments:
- images: np.ndarray
@Returns
- images: torch.tensor
'''
images = images.astype(np.float32)
# Normalize to [-1, 1]
images = normalize_input(images)
images = torch.from_numpy(images)
images = images.to(self.device)
# Add batch dim
if len(images.shape) == 3:
images = images.unsqueeze(0)
# channel first
images = images.permute(0, 3, 1, 2)
return images
def parse_args():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
'--weight',
type=str,
default="hayao:v2",
help=f'Model weight, can be path or pretrained {tuple(RELEASED_WEIGHTS.keys())}'
)
parser.add_argument('--src', type=str, help='Source, can be directory contains images, image file or video file.')
parser.add_argument('--device', type=str, default='cuda', help='Device, cuda or cpu')
parser.add_argument('--imgsz', type=int, default=None, help='Resize image to specified size if provided')
parser.add_argument('--out', type=str, default='inference_images', help='Output, can be directory or file')
parser.add_argument(
'--retain-color',
action='store_true',
help='If provided the generated image will retain original color of input image')
# Video params
parser.add_argument('--batch-size', type=int, default=4, help='Batch size when inference video')
parser.add_argument('--start', type=int, default=0, help='Start time of video (second)')
parser.add_argument('--end', type=int, default=0, help='End time of video (second), 0 if not set')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
predictor = Predictor(
args.weight,
args.device,
retain_color=args.retain_color,
imgsz=args.imgsz,
)
if not os.path.exists(args.src):
raise FileNotFoundError(args.src)
if is_video_file(args.src):
predictor.transform_video(
args.src,
args.out,
args.batch_size,
start=args.start,
end=args.end
)
elif os.path.isdir(args.src):
predictor.transform_in_dir(args.src, args.out)
elif os.path.isfile(args.src):
save_path = args.out
if not is_image_file(args.out):
os.makedirs(args.out, exist_ok=True)
save_path = os.path.join(args.out, os.path.basename(args.src))
if args.src.endswith('.gif'):
# GIF file
predictor.transform_gif(args.src, save_path, args.batch_size)
else:
predictor.transform_file(args.src, save_path)
else:
raise NotImplementedError(f"{args.src} is not supported")
|