Spaces:
Running
Running
| import logging | |
| import time | |
| from pathlib import Path | |
| import contextlib | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format="%(asctime)s - %(levelname)s - %(message)s", | |
| ) | |
| import gradio as gr | |
| import nltk | |
| import torch | |
| from pdf2text import * | |
| _here = Path(__file__).parent | |
| nltk.download("stopwords") # TODO=find where this requirement originates from | |
| def load_uploaded_file(file_obj, temp_dir: Path = None): | |
| """ | |
| load_uploaded_file - process an uploaded file | |
| Args: | |
| file_obj (POTENTIALLY list): Gradio file object inside a list | |
| Returns: | |
| str, the uploaded file contents | |
| """ | |
| # check if mysterious file object is a list | |
| if isinstance(file_obj, list): | |
| file_obj = file_obj[0] | |
| file_path = Path(file_obj.name) | |
| if temp_dir is None: | |
| _temp_dir = _here / "temp" | |
| _temp_dir.mkdir(exist_ok=True) | |
| try: | |
| pdf_bytes_obj = open(file_path, "rb").read() | |
| temp_path = temp_dir / file_path.name if temp_dir else file_path | |
| # save to PDF file | |
| with open(temp_path, "wb") as f: | |
| f.write(pdf_bytes_obj) | |
| logging.info(f"Saved uploaded file to {temp_path}") | |
| return str(temp_path.resolve()) | |
| except Exception as e: | |
| logging.error(f"Trying to load file with path {file_path}, error: {e}") | |
| print(f"Trying to load file with path {file_path}, error: {e}") | |
| return None | |
| def convert_PDF(pdf_obj, language: str = "en", max_pages=20,): | |
| """ | |
| convert_PDF - convert a PDF file to text | |
| Args: | |
| pdf_bytes_obj (bytes): PDF file contents | |
| language (str, optional): Language to use for OCR. Defaults to "en". | |
| Returns: | |
| str, the PDF file contents as text | |
| """ | |
| global ocr_model | |
| st = time.perf_counter() | |
| if isinstance(pdf_obj, list): | |
| pdf_obj = pdf_obj[0] | |
| file_path = Path(pdf_obj.name) | |
| conversion_stats = convert_PDF_to_Text( | |
| file_path, | |
| ocr_model=ocr_model, | |
| max_pages=max_pages, | |
| ) | |
| converted_txt = conversion_stats["converted_text"] | |
| num_pages = conversion_stats["num_pages"] | |
| was_truncated = conversion_stats["truncated"] | |
| # if alt_lang: # TODO: fix this | |
| rt = round((time.perf_counter() - st) / 60, 2) | |
| print(f"Runtime: {rt} minutes") | |
| html = "" | |
| if was_truncated: | |
| html += f"<p>WARNING - PDF was truncated to {max_pages} pages</p>" | |
| html += f"<p>Runtime: {rt} minutes on CPU for {num_pages} pages</p>" | |
| return converted_txt, html | |
| if __name__ == "__main__": | |
| logging.info("Starting app") | |
| use_GPU = torch.cuda.is_available() | |
| logging.info(f"Using GPU status: {use_GPU}") | |
| logging.info("Loading OCR model") | |
| with contextlib.redirect_stdout(None): | |
| ocr_model = ocr_predictor( | |
| "db_resnet50", | |
| "crnn_mobilenet_v3_large", | |
| pretrained=True, | |
| assume_straight_pages=True, | |
| ) | |
| # define pdf bytes as None | |
| pdf_obj = _here / "example_file.pdf" | |
| pdf_obj = str(pdf_obj.resolve()) | |
| _temp_dir = _here / "temp" | |
| _temp_dir.mkdir(exist_ok=True) | |
| logging.info("starting demo") | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.Markdown("# PDF to Text") | |
| gr.Markdown("A basic demo of pdf-to-text conversion using OCR from the [doctr](https://mindee.github.io/doctr/index.html) package") | |
| gr.Markdown("---") | |
| with gr.Column(): | |
| gr.Markdown("## Load Inputs") | |
| gr.Markdown("Upload your own file:") | |
| gr.Markdown("_If no file is uploaded, a sample PDF will be used_") | |
| uploaded_file = gr.File( | |
| label="Upload a PDF file", | |
| file_count="single", | |
| type="file", | |
| value= _here / "example_file.pdf", | |
| ) | |
| # load_file_button = gr.Button("Load Uploaded File") | |
| gr.Markdown("---") | |
| with gr.Column(): | |
| gr.Markdown("## Convert PDF to Text") | |
| convert_button = gr.Button("Convert PDF!") | |
| out_placeholder = gr.HTML("<p><em>Output will appear below:</em></p>") | |
| gr.Markdown("### Output") | |
| OCR_text = gr.Textbox( | |
| label="OCR Result", placeholder="The OCR text will appear here" | |
| ) | |
| text_file = gr.File( | |
| label="Download Text File", | |
| file_count="single", | |
| type="file", | |
| interactive=False, | |
| ) | |
| # load_file_button.click( | |
| # fn=load_uploaded_file, inputs=uploaded_file, outputs=[pdf_obj] | |
| # ) | |
| convert_button.click( | |
| fn=convert_PDF, inputs=[uploaded_file], outputs=[OCR_text, out_placeholder] | |
| ) | |
| demo.launch(enable_queue=True) | |