Spaces:
Running
Running
File size: 16,394 Bytes
70f83ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
def handle_response(response):
if response.status_code == 200:
return response.json()
else:
return {"error": f"Failed to fetch data. Status code: {response.status_code}"}
def get_income_statement(ticker, period='annual', limit=5):
"""
Fetches the income statement for a given company (ticker) over a specified period and with a limit on the number of records returned.
Parameters:
-----------
ticker : str
The stock symbol or CIK (Central Index Key) for the company (e.g., 'AAPL' for Apple or '0000320193' for its CIK).
period : str, optional
The reporting period for the income statement. Allowable values are:
- 'annual' : Retrieves the annual income statement (default).
- 'quarter' : Retrieves the quarterly income statement.
limit : int, optional
Limits the number of records returned. The default value is 5.
Returns:
--------
dict or list of dict
The income statement data, including fields like date, symbol, reported currency, filing date, etc.
Example:
--------
get_income_statement('AAPL', period='annual', limit=5)
Response format:
----------------
[
{
"date": "2022-09-24",
"symbol": "AAPL",
"reportedCurrency": "USD",
"cik": "0000320193",
"fillingDate": "2022-10-28",
"acceptedDate": "2022-10-27 18:01:14",
...
},
...
]
"""
BASE_URL = "https://financialmodelingprep.com/api/v3"
params = {
"period": period, # Accepts 'annual' or 'quarter'
"limit": limit, # Limits the number of records returned
"apikey": os.environ['FMP_API_KEY'] # API Key for authentication
}
# Construct the full URL with query parameters
endpoint = f"{BASE_URL}/income-statement/{ticker}?{urlencode(params)}"
response = requests.get(endpoint)
return handle_response(response)
def ticker_search(query, limit=10, exchange='NYSE'):
"""
Searches for ticker symbols and exchanges for both equity securities and exchange-traded funds (ETFs)
by searching with the company name or ticker symbol.
Parameters:
-----------
query : str
The name or ticker symbol to search for (e.g., 'AA' for Alcoa).
limit : int, optional
Limits the number of records returned. The default is 10.
exchange : str, optional
Specifies the exchange to filter results by. Allowable values include:
- 'NYSE' : New York Stock Exchange (default).
- 'NASDAQ' : NASDAQ Exchange.
- Other exchange codes supported by the API.
Returns:
--------
dict or list of dict
The search results, including the symbol, name, currency, stock exchange, and exchange short name.
Example:
--------
ticker_search('AA', limit=10, exchange='NASDAQ')
Response format:
----------------
[
{
"symbol": "PRAA",
"name": "PRA Group, Inc.",
"currency": "USD",
"stockExchange": "NasdaqGS",
"exchangeShortName": "NASDAQ"
},
{
"symbol": "PAAS",
"name": "Pan American Silver Corp.",
"currency": "USD",
"stockExchange": "NasdaqGS",
"exchangeShortName": "NASDAQ"
},
...
]
"""
BASE_URL = "https://financialmodelingprep.com/api/v3"
params = {
"limit": limit,
"exchange": exchange,
"apikey": os.environ['FMP_API_KEY']
}
endpoint = f"{BASE_URL}/search?query={query}&{urlencode(params)}"
response = requests.get(endpoint)
return handle_response(response)
def company_profile(symbol):
"""
Fetches a company's profile, including key stats such as price, market capitalization, beta, and other essential details.
Parameters:
-----------
symbol : str
The stock ticker symbol or CIK (Central Index Key) for the company (e.g., 'AAPL' for Apple).
Returns:
--------
dict or list of dict
The company's profile data, including fields such as symbol, price, beta, market cap, industry, CEO, and description.
Example:
--------
company_profile('AAPL')
Response format:
----------------
[
{
"symbol": "AAPL",
"price": 145.30,
"beta": 1.25,
"volAvg": 98364732,
"mktCap": 2423446000000,
"lastDiv": 0.88,
"range": "122.25-157.33",
"changes": -2.00,
"companyName": "Apple Inc.",
"currency": "USD",
"cik": "0000320193",
"isin": "US0378331005",
"cusip": "037833100",
"exchange": "NasdaqGS",
"exchangeShortName": "NASDAQ",
"industry": "Consumer Electronics",
"website": "https://www.apple.com",
"description": "Apple Inc. designs, manufactures, and markets smartphones, personal computers, tablets, wearables, and accessories worldwide."
}
]
"""
BASE_URL = "https://financialmodelingprep.com/api/v3"
params = {
'apikey': os.environ['FMP_API_KEY']
}
endpoint = f"{BASE_URL}/profile/{symbol}?{urlencode(params)}"
response = requests.get(endpoint)
return handle_response(response)
def stock_grade(symbol, limit = 500):
BASE_URL = "https://financialmodelingprep.com/api/v3"
params = {
'apikey':os.environ['FMP_API_KEY'],
'limit':limit
}
endpoint = f"{BASE_URL}/grade/{symbol}?{urlencode(params)}"
response = requests.get(endpoint)
return handle_response(response)
def current_market_cap(symbol):
"""
Fetches the current market capitalization of a given company based on its stock symbol.
Parameters:
-----------
symbol : str
The stock ticker symbol for the company (e.g., 'AAPL' for Apple).
Returns:
--------
dict or list of dict
The market capitalization data, including fields such as symbol, date, and market cap.
Example:
--------
current_market_cap('AAPL')
Response format:
----------------
[
{
"symbol": "AAPL",
"date": "2023-03-02",
"marketCap": 2309048053309
}
]
"""
BASE_URL = "https://financialmodelingprep.com/api/v3"
params = {
'apikey': os.environ['FMP_API_KEY']
}
endpoint = f"{BASE_URL}/market-capitalization/{symbol}?{urlencode(params)}"
response = requests.get(endpoint)
return handle_response(response)
def historical_market_cap(symbol, from_date=None, to_date=None, limit=None):
"""
Fetches the historical market capitalization of a given company within a specified date range.
Parameters:
-----------
symbol : str
The stock ticker symbol for the company (e.g., 'AAPL' for Apple).
from_date : str, optional
The start date for the historical data in 'YYYY-MM-DD' format (e.g., '2023-10-10').
Default is None, which fetches data from the earliest available date.
to_date : str, optional
The end date for the historical data in 'YYYY-MM-DD' format (e.g., '2023-12-10').
Default is None, which fetches data up to the latest available date.
limit : int, optional
Limits the number of records returned. Default is None, which fetches all available records.
Returns:
--------
dict or list of dict
The historical market cap data, including fields such as symbol, date, and market capitalization.
Example:
--------
historical_market_cap('AAPL', from_date='2023-10-10', to_date='2023-12-10', limit=100)
Response format:
----------------
[
{
"symbol": "AAPL",
"date": "2023-03-02",
"marketCap": 2313794623242
}
]
"""
BASE_URL = "https://financialmodelingprep.com/api/v3"
params = {
'apikey': os.environ['FMP_API_KEY'],
'from': from_date,
'to': to_date,
'limit': limit
}
endpoint = f"{BASE_URL}/historical-market-capitalization/{symbol}?{urlencode(params)}"
response = requests.get(endpoint)
return handle_response(response)
def analyst_recommendations(symbol):
"""
Fetches the analyst recommendations for a given company based on its stock symbol.
This includes buy, hold, and sell ratings.
Parameters:
-----------
symbol : str
The stock ticker symbol for the company (e.g., 'AAPL' for Apple).
Returns:
--------
dict or list of dict
The analyst recommendation data, including fields such as buy, hold, sell, and strong buy ratings.
Example:
--------
analyst_recommendations('AAPL')
Response format:
----------------
[
{
"symbol": "AAPL",
"date": "2023-08-01",
"analystRatingsBuy": 21,
"analystRatingsHold": 6,
"analystRatingsSell": 0,
"analystRatingsStrongSell": 0,
"analystRatingsStrongBuy": 11
}
]
"""
BASE_URL = "https://financialmodelingprep.com/api/v3"
params = {
'apikey': os.environ['FMP_API_KEY']
}
endpoint = f"{BASE_URL}/analyst-stock-recommendations/{symbol}?{urlencode(params)}"
response = requests.get(endpoint)
return handle_response(response)
def stock_peers(symbol):
"""
Fetches a list of companies that are considered peers of the given company.
These peers are companies that trade on the same exchange, are in the same sector,
and have a similar market capitalization.
Parameters:
-----------
symbol : str
The stock ticker symbol for the company (e.g., 'AAPL' for Apple).
Returns:
--------
dict or list of dict
The peers data, including a list of peer company ticker symbols.
Example:
--------
stock_peers('AAPL')
Response format:
----------------
[
{
"symbol": "AAPL",
"peersList": [
"LPL",
"SNEJF",
"PCRFY",
"SONO",
"VZIO",
...
]
}
]
"""
params = {
'apikey': os.environ['FMP_API_KEY'],
'symbol': symbol
}
BASE_URL = "https://financialmodelingprep.com/api/v4"
endpoint = f"{BASE_URL}/stock_peers?{urlencode(params)}"
response = requests.get(endpoint)
return handle_response(response)
def earnings_historical_and_upcoming(symbol, limit=100):
"""
Fetches historical and upcoming earnings announcements for a given company.
The response includes the date, EPS (earnings per share), estimated EPS, revenue, and estimated revenue.
Parameters:
-----------
symbol : str
The stock ticker symbol for the company (e.g., 'AAPL' for Apple).
limit : int, optional
Limits the number of records returned. The default is 100.
Returns:
--------
dict or list of dict
The earnings data, including fields such as date, EPS, estimated EPS, revenue, and estimated revenue.
Example:
--------
earnings_historical_and_upcoming('AAPL', limit=100)
Response format:
----------------
[
{
"date": "1998-10-14",
"symbol": "AAPL",
"eps": 0.0055,
"epsEstimated": 0.00393,
"time": "amc",
"revenue": 1556000000,
"revenueEstimated": 2450700000,
"updatedFromDate": "2023-12-04",
"fiscalDateEnding": "1998-09-25"
}
]
"""
params = {
'apikey': os.environ['FMP_API_KEY'],
'limit': limit
}
endpoint = f"{BASE_URL}/historical/earning_calendar/{symbol}?{urlencode(params)}"
response = requests.get(endpoint)
return handle_response(response)
def intraday_stock_prices(timeframe, symbol, from_date=None, to_date=None, extended='false'):
"""
Fetches the historical intraday stock price for a given company over a specified timeframe.
Parameters:
-----------
timeframe : str
The time interval for the stock data. Allowable values are:
- '1min' : 1 minute interval
- '5min' : 5 minute interval
- '15min' : 15 minute interval
- '30min' : 30 minute interval
- '1hour' : 1 hour interval
- '4hour' : 4 hour interval
symbol : str
The stock symbol for which to retrieve the data (e.g., 'AAPL' for Apple).
from_date : str, optional
The start date for the historical data in 'YYYY-MM-DD' format (e.g., '2023-08-10').
Default is None, which fetches all available data up to the present.
to_date : str, optional
The end date for the historical data in 'YYYY-MM-DD' format (e.g., '2023-09-10').
Default is None, which fetches data from the beginning up to the current date.
extended : str, optional
Whether to fetch extended market data (pre-market and after-hours).
Allowable values:
- 'true' : Fetch extended market data
- 'false' : Fetch only regular market hours data (default).
Returns:
--------
dict or list of dict
The historical intraday stock data, including open, high, low, close, and volume for each time interval.
Example:
--------
intraday_stock_price('5min', 'AAPL', from_date='2023-08-10', to_date='2023-09-10', extended='false')
Response format:
----------------
[
{
"date": "2023-03-02 16:00:00",
"open": 145.92,
"low": 145.72,
"high": 146.00,
"close": 145.79,
"volume": 1492644
},
...
]
"""
BASE_URL = "https://financialmodelingprep.com/api/v3"
params = {
'apikey': os.environ['FMP_API_KEY'],
'from': from_date,
'to': to_date,
'extended': extended
}
endpoint = f"{BASE_URL}/historical-chart/{timeframe}/{symbol}?{urlencode(params)}"
response = requests.get(endpoint)
return handle_response(response)
def daily_stock_prices(symbol, from_date=None, to_date=None, serietype='line'):
"""
Fetches the daily End-Of-Day (EOD) stock price for a given company over a specified date range.
Parameters:
-----------
symbol : str
The stock symbol for which to retrieve the data (e.g., 'AAPL' for Apple).
from_date : str, optional
The start date for the historical data in 'YYYY-MM-DD' format (e.g., '1990-10-10').
Default is None, which fetches the earliest available data.
to_date : str, optional
The end date for the historical data in 'YYYY-MM-DD' format (e.g., '2023-10-10').
Default is None, which fetches data up to the most recent date.
serietype : str, optional
The type of data series to return. Allowable values are:
- 'line' : Line chart data (default).
- 'other types' can be specified if supported by the API in the future.
Returns:
--------
dict or list of dict
The daily stock data, including open, high, low, close, volume, adjusted close, etc.
Example:
--------
daily_stock_price('AAPL', from_date='1990-10-10', to_date='2023-10-10', serietype='line')
Response format:
----------------
{
"symbol": "AAPL",
"historical": [
{
"date": "2023-10-06",
"open": 173.8,
"high": 176.61,
"low": 173.18,
"close": 176.53,
"adjClose": 176.53,
"volume": 21712747,
"unadjustedVolume": 21712747,
"change": 2.73,
"changePercent": 1.57077,
"vwap": 175.44,
"label": "October 06, 23",
"changeOverTime": 0.0157077
},
...
]
}
"""
BASE_URL = "https://financialmodelingprep.com/api/v3"
params = {
'apikey': os.environ['FMP_API_KEY'],
'from': from_date,
'to': to_date,
'serietype': serietype
}
endpoint = f"{BASE_URL}/historical-price-full/{symbol}?{urlencode(params)}"
response = requests.get(endpoint)
return handle_response(response) |