pritmanvar commited on
Commit
478b653
·
verified ·
1 Parent(s): b6b2407

resolved bug of dataframe

Browse files
Files changed (1) hide show
  1. app.py +73 -4
app.py CHANGED
@@ -72,7 +72,7 @@ if data:
72
  # Apply OCR and NER
73
  file_name = ocr(img_name)
74
  Output_dict = ner(file_name)
75
- df = pd.DataFrame(Output_dict)
76
 
77
  ocr_data = ""
78
  with open(os.path.join('runs', 'segment', path['MAIN_FLOW_INFERENCE_FOLDER'], 'ocr_label_data', data.name.split('.')[0]+'.txt'),'r+') as f :
@@ -81,6 +81,75 @@ if data:
81
  st.text(ocr_data)
82
 
83
  st.header("NER Output")
84
- df = df.T
85
- df.columns = ['Value']
86
- st.table(df.T)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  # Apply OCR and NER
73
  file_name = ocr(img_name)
74
  Output_dict = ner(file_name)
75
+ # df = pd.DataFrame(Output_dict)
76
 
77
  ocr_data = ""
78
  with open(os.path.join('runs', 'segment', path['MAIN_FLOW_INFERENCE_FOLDER'], 'ocr_label_data', data.name.split('.')[0]+'.txt'),'r+') as f :
 
81
  st.text(ocr_data)
82
 
83
  st.header("NER Output")
84
+
85
+ new_df = pd.DataFrame()
86
+ new_df['Entity'] = list(Output_dict.keys())
87
+
88
+ # print(df)
89
+ new_df['Value'] = list(Output_dict.values())
90
+ new_df['Value'] = new_df['Value'].astype('str')
91
+ st.table(new_df)
92
+
93
+ else:
94
+ img_name = '3.jpg'
95
+ img = cv2.imread(img_name,0)
96
+
97
+ if img.shape[0] > 1500:
98
+ height, width = img.shape
99
+ img = img[height//4:-height//4, width//4:-width//4]
100
+
101
+ cv2.imwrite(os.path.join('grey_images',img_name), img)
102
+
103
+ #call main function
104
+ # main(os.path.join('grey_images',img_name))
105
+ file_path = os.path.join('grey_images',img_name)
106
+ img_name = os.path.basename(file_path)
107
+
108
+
109
+ col1,col2 = st.columns(2)
110
+
111
+ with col1:
112
+ st.markdown("<h3 style='text-align: center;'>Grey Image</h1>", unsafe_allow_html=True)
113
+ st.image(os.path.join('grey_images',img_name))
114
+
115
+ # Object detection and enhance image
116
+ seg_result, img_file = object_detection(file_path)
117
+ croped_img = crop_image(seg_result, img_file, img_name)
118
+ image = enhance_image(croped_img, img_name)
119
+
120
+ st.markdown("<h3 style='text-align: center;'>Enhanced Image</h1>", unsafe_allow_html=True)
121
+ st.image(os.path.join('runs', 'segment', path['MAIN_FLOW_INFERENCE_FOLDER'], 'enhanced', img_name))
122
+
123
+
124
+ with col2:
125
+ st.markdown("<h3 style='text-align: center;'>Detected Image</h1>", unsafe_allow_html=True)
126
+ st.image(os.path.join('runs', 'segment',path['MAIN_FLOW_INFERENCE_FOLDER'],img_name))
127
+
128
+ # Rotation
129
+ processed_img = morphological_transform(image)
130
+ rotated_image, image = hoffman_transform(processed_img, image)
131
+ img_name = pytesseract_rotate(rotated_image, image, img_name)
132
+
133
+ st.markdown("<h3 style='text-align: center;'>Rotated Image</h1>", unsafe_allow_html=True)
134
+ st.image(os.path.join('runs', 'segment', path['MAIN_FLOW_INFERENCE_FOLDER'], 'rotated_image', img_name))
135
+
136
+ # Apply OCR and NER
137
+ file_name = ocr(img_name)
138
+ Output_dict = ner(file_name)
139
+ # df = pd.DataFrame(Output_dict)
140
+
141
+ ocr_data = ""
142
+ with open(os.path.join('runs', 'segment', path['MAIN_FLOW_INFERENCE_FOLDER'], 'ocr_label_data', img_name.split('.')[0]+'.txt'),'r+') as f :
143
+ ocr_data = f.read()
144
+ st.header("OCR Text Output")
145
+ st.text(ocr_data)
146
+
147
+ st.header("NER Output")
148
+
149
+ new_df = pd.DataFrame()
150
+ new_df['Entity'] = list(Output_dict.keys())
151
+
152
+ # print(df)
153
+ new_df['Value'] = list(Output_dict.values())
154
+ new_df['Value'] = new_df['Value'].astype('str')
155
+ st.table(new_df)