Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,152 +6,59 @@ import traceback
|
|
| 6 |
from io import BytesIO
|
| 7 |
from typing import Any, Dict, List, Optional, Tuple
|
| 8 |
import re
|
| 9 |
-
import warnings
|
| 10 |
|
| 11 |
import fitz # PyMuPDF
|
| 12 |
import gradio as gr
|
| 13 |
import requests
|
| 14 |
import torch
|
| 15 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 16 |
-
from transformers import AutoModelForCausalLM, AutoProcessor, VisionEncoderDecoderModel
|
| 17 |
from huggingface_hub import snapshot_download
|
|
|
|
| 18 |
from qwen_vl_utils import process_vision_info
|
| 19 |
-
|
| 20 |
-
# Suppress the FutureWarning for cleaner output (optional)
|
| 21 |
-
warnings.filterwarnings(
|
| 22 |
-
"ignore",
|
| 23 |
-
category=FutureWarning,
|
| 24 |
-
message="Both `num_logits_to_keep` and `logits_to_keep` are set"
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
# JavaScript for theme refresh
|
| 28 |
-
js_func = """
|
| 29 |
-
function refresh() {
|
| 30 |
-
const url = new URL(window.location);
|
| 31 |
-
if (url.searchParams.get('__theme') !== 'dark') {
|
| 32 |
-
url.searchParams.set('__theme', 'dark');
|
| 33 |
-
window.location.href = url.href;
|
| 34 |
-
}
|
| 35 |
-
}
|
| 36 |
-
"""
|
| 37 |
|
| 38 |
# Constants
|
| 39 |
MIN_PIXELS = 3136
|
| 40 |
MAX_PIXELS = 11289600
|
| 41 |
IMAGE_FACTOR = 28
|
| 42 |
|
| 43 |
-
#
|
| 44 |
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
|
| 45 |
|
| 46 |
1. Bbox format: [x1, y1, x2, y2]
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
3. Text Extraction & Formatting Rules:
|
| 49 |
-
- Picture:
|
| 50 |
-
- Formula:
|
| 51 |
-
- Table:
|
| 52 |
-
- Others:
|
| 53 |
-
4. Constraints:
|
| 54 |
-
- Use original text, no translation
|
| 55 |
-
- Sort elements by human reading order
|
| 56 |
-
5. Final Output: Single JSON object
|
| 57 |
-
"""
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
model_id = "rednote-hilab/dots.ocr"
|
| 63 |
-
model_path = "./models/dots-ocr-local"
|
| 64 |
-
snapshot_download(
|
| 65 |
-
repo_id=model_id,
|
| 66 |
-
local_dir=model_path,
|
| 67 |
-
local_dir_use_symlinks=False,
|
| 68 |
-
)
|
| 69 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 70 |
-
model_path,
|
| 71 |
-
attn_implementation="flash_attention_2",
|
| 72 |
-
torch_dtype=torch.bfloat16,
|
| 73 |
-
device_map="auto",
|
| 74 |
-
trust_remote_code=True
|
| 75 |
-
)
|
| 76 |
-
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
| 77 |
-
elif model_name == "Dolphin":
|
| 78 |
-
model_id = "ByteDance/Dolphin"
|
| 79 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
| 80 |
-
model = VisionEncoderDecoderModel.from_pretrained(model_id)
|
| 81 |
-
model.eval()
|
| 82 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 83 |
-
model.to(device)
|
| 84 |
-
model = model.half() # Use half precision
|
| 85 |
-
else:
|
| 86 |
-
raise ValueError(f"Unknown model: {model_name}")
|
| 87 |
-
return model, processor
|
| 88 |
-
|
| 89 |
-
# Inference functions
|
| 90 |
-
def inference_dots_ocr(model, processor, image, prompt, max_new_tokens):
|
| 91 |
-
messages = [
|
| 92 |
-
{
|
| 93 |
-
"role": "user",
|
| 94 |
-
"content": [
|
| 95 |
-
{"type": "image", "image": image},
|
| 96 |
-
{"type": "text", "text": prompt}
|
| 97 |
-
]
|
| 98 |
-
}
|
| 99 |
-
]
|
| 100 |
-
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 101 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
| 102 |
-
inputs = processor(
|
| 103 |
-
text=[text],
|
| 104 |
-
images=image_inputs,
|
| 105 |
-
videos=video_inputs,
|
| 106 |
-
padding=True,
|
| 107 |
-
return_tensors="pt",
|
| 108 |
-
)
|
| 109 |
-
inputs = inputs.to(model.device)
|
| 110 |
-
with torch.no_grad():
|
| 111 |
-
generated_ids = model.generate(
|
| 112 |
-
**inputs,
|
| 113 |
-
max_new_tokens=max_new_tokens,
|
| 114 |
-
do_sample=False # Temperature removed previously to fix another warning
|
| 115 |
-
)
|
| 116 |
-
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
| 117 |
-
output_text = processor.batch_decode(
|
| 118 |
-
generated_ids_trimmed,
|
| 119 |
-
skip_special_tokens=True,
|
| 120 |
-
clean_up_tokenization_spaces=False
|
| 121 |
-
)
|
| 122 |
-
return output_text[0] if output_text else ""
|
| 123 |
-
|
| 124 |
-
def inference_dolphin(model, processor, image):
|
| 125 |
-
pixel_values = processor(image, return_tensors="pt").pixel_values.to(model.device).half()
|
| 126 |
-
generated_ids = model.generate(pixel_values)
|
| 127 |
-
generated_text = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 128 |
-
return generated_text
|
| 129 |
-
|
| 130 |
-
# Load models at startup
|
| 131 |
-
models = {
|
| 132 |
-
"dots.ocr": load_model("dots.ocr"),
|
| 133 |
-
"Dolphin": load_model("Dolphin")
|
| 134 |
-
}
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
"images": [],
|
| 139 |
-
"current_page": 0,
|
| 140 |
-
"total_pages": 0,
|
| 141 |
-
"file_type": None,
|
| 142 |
-
"is_parsed": False,
|
| 143 |
-
"results": []
|
| 144 |
-
}
|
| 145 |
|
| 146 |
-
# Utility
|
| 147 |
def round_by_factor(number: int, factor: int) -> int:
|
|
|
|
| 148 |
return round(number / factor) * factor
|
| 149 |
|
| 150 |
-
def smart_resize(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
if max(height, width) / min(height, width) > 200:
|
| 152 |
raise ValueError(f"Aspect ratio must be < 200, got {max(height, width) / min(height, width)}")
|
| 153 |
h_bar = max(factor, round_by_factor(height, factor))
|
| 154 |
w_bar = max(factor, round_by_factor(width, factor))
|
|
|
|
| 155 |
if h_bar * w_bar > max_pixels:
|
| 156 |
beta = math.sqrt((height * width) / max_pixels)
|
| 157 |
h_bar = round_by_factor(height / beta, factor)
|
|
@@ -163,6 +70,7 @@ def smart_resize(height: int, width: int, factor: int = 28, min_pixels: int = 31
|
|
| 163 |
return h_bar, w_bar
|
| 164 |
|
| 165 |
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
|
|
|
|
| 166 |
if isinstance(image_input, str):
|
| 167 |
if image_input.startswith(("http://", "https://")):
|
| 168 |
response = requests.get(image_input)
|
|
@@ -173,20 +81,29 @@ def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
|
|
| 173 |
image = image_input.convert('RGB')
|
| 174 |
else:
|
| 175 |
raise ValueError(f"Invalid image input type: {type(image_input)}")
|
| 176 |
-
|
|
|
|
| 177 |
min_pixels = min_pixels or MIN_PIXELS
|
| 178 |
max_pixels = max_pixels or MAX_PIXELS
|
| 179 |
-
height, width = smart_resize(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
image = image.resize((width, height), Image.LANCZOS)
|
|
|
|
| 181 |
return image
|
| 182 |
|
| 183 |
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
|
|
|
| 184 |
images = []
|
| 185 |
try:
|
| 186 |
pdf_document = fitz.open(pdf_path)
|
| 187 |
for page_num in range(len(pdf_document)):
|
| 188 |
page = pdf_document.load_page(page_num)
|
| 189 |
-
mat = fitz.Matrix(2.0, 2.0)
|
| 190 |
pix = page.get_pixmap(matrix=mat)
|
| 191 |
img_data = pix.tobytes("ppm")
|
| 192 |
image = Image.open(BytesIO(img_data)).convert('RGB')
|
|
@@ -198,66 +115,43 @@ def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
|
| 198 |
return images
|
| 199 |
|
| 200 |
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
|
|
|
|
| 201 |
img_copy = image.copy()
|
| 202 |
draw = ImageDraw.Draw(img_copy)
|
|
|
|
| 203 |
colors = {
|
| 204 |
-
'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1',
|
| 205 |
-
'
|
| 206 |
-
'
|
|
|
|
| 207 |
}
|
|
|
|
| 208 |
try:
|
| 209 |
-
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12)
|
| 210 |
-
except Exception:
|
| 211 |
-
font = ImageFont.load_default()
|
| 212 |
-
try:
|
| 213 |
for item in layout_data:
|
| 214 |
if 'bbox' in item and 'category' in item:
|
| 215 |
bbox = item['bbox']
|
| 216 |
category = item['category']
|
| 217 |
color = colors.get(category, '#000000')
|
|
|
|
| 218 |
draw.rectangle(bbox, outline=color, width=2)
|
|
|
|
| 219 |
label = category
|
| 220 |
label_bbox = draw.textbbox((0, 0), label, font=font)
|
| 221 |
-
label_width = label_bbox[2] - label_bbox[0]
|
| 222 |
-
|
| 223 |
-
label_x = bbox[0]
|
| 224 |
-
label_y = max(0, bbox[1] - label_height - 2)
|
| 225 |
draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 2], fill=color)
|
| 226 |
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
|
| 227 |
except Exception as e:
|
| 228 |
print(f"Error drawing layout: {e}")
|
|
|
|
| 229 |
return img_copy
|
| 230 |
|
| 231 |
-
def is_arabic_text(text: str) -> bool:
|
| 232 |
-
if not text:
|
| 233 |
-
return False
|
| 234 |
-
header_pattern = r'^#{1,6}\s+(.+)$'
|
| 235 |
-
paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$'
|
| 236 |
-
content_text = []
|
| 237 |
-
for line in text.split('\n'):
|
| 238 |
-
line = line.strip()
|
| 239 |
-
if not line:
|
| 240 |
-
continue
|
| 241 |
-
header_match = re.match(header_pattern, line, re.MULTILINE)
|
| 242 |
-
if header_match:
|
| 243 |
-
content_text.append(header_match.group(1))
|
| 244 |
-
continue
|
| 245 |
-
if re.match(paragraph_pattern, line, re.MULTILINE):
|
| 246 |
-
content_text.append(line)
|
| 247 |
-
if not content_text:
|
| 248 |
-
return False
|
| 249 |
-
combined_text = ' '.join(content_text)
|
| 250 |
-
arabic_chars = 0
|
| 251 |
-
total_chars = 0
|
| 252 |
-
for char in combined_text:
|
| 253 |
-
if char.isalpha():
|
| 254 |
-
total_chars += 1
|
| 255 |
-
if ('\u0600' <= char <= '\u06FF') or ('\u0750' <= char <= '\u077F') or ('\u08A0' <= char <= '\u08FF'):
|
| 256 |
-
arabic_chars += 1
|
| 257 |
-
return total_chars > 0 and (arabic_chars / total_chars) > 0.5
|
| 258 |
-
|
| 259 |
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
|
|
|
|
| 260 |
import base64
|
|
|
|
| 261 |
markdown_lines = []
|
| 262 |
try:
|
| 263 |
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
|
|
@@ -265,23 +159,21 @@ def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = '
|
|
| 265 |
category = item.get('category', '')
|
| 266 |
text = item.get(text_key, '')
|
| 267 |
bbox = item.get('bbox', [])
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
else:
|
| 284 |
-
markdown_lines.append('<image-card alt="Image" src="Image detected" ></image-card>\n')
|
| 285 |
elif not text:
|
| 286 |
continue
|
| 287 |
elif category == 'Title':
|
|
@@ -293,15 +185,9 @@ def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = '
|
|
| 293 |
elif category == 'List-item':
|
| 294 |
markdown_lines.append(f"- {text}\n")
|
| 295 |
elif category == 'Table':
|
| 296 |
-
if text.strip().startswith('<')
|
| 297 |
-
markdown_lines.append(f"{text}\n")
|
| 298 |
-
else:
|
| 299 |
-
markdown_lines.append(f"**Table:** {text}\n")
|
| 300 |
elif category == 'Formula':
|
| 301 |
-
if text.strip().startswith('$') or '\\' in text
|
| 302 |
-
markdown_lines.append(f"$$ \n{text}\n $$\n") # Fixed formatting, removed extra spaces
|
| 303 |
-
else:
|
| 304 |
-
markdown_lines.append(f"**Formula:** {text}\n")
|
| 305 |
elif category == 'Caption':
|
| 306 |
markdown_lines.append(f"*{text}*\n")
|
| 307 |
elif category == 'Footnote':
|
|
@@ -314,37 +200,122 @@ def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = '
|
|
| 314 |
except Exception as e:
|
| 315 |
print(f"Error converting to markdown: {e}")
|
| 316 |
return str(layout_data)
|
|
|
|
| 317 |
return "\n".join(markdown_lines)
|
| 318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
|
|
|
| 320 |
global pdf_cache
|
| 321 |
if not file_path or not os.path.exists(file_path):
|
| 322 |
return None, "No file selected"
|
|
|
|
| 323 |
file_ext = os.path.splitext(file_path)[1].lower()
|
| 324 |
try:
|
| 325 |
if file_ext == '.pdf':
|
| 326 |
images = load_images_from_pdf(file_path)
|
| 327 |
if not images:
|
| 328 |
return None, "Failed to load PDF"
|
| 329 |
-
pdf_cache.update({
|
| 330 |
-
"images": images,
|
| 331 |
-
"current_page": 0,
|
| 332 |
-
"total_pages": len(images),
|
| 333 |
-
"file_type": "pdf",
|
| 334 |
-
"is_parsed": False,
|
| 335 |
-
"results": []
|
| 336 |
-
})
|
| 337 |
return images[0], f"Page 1 / {len(images)}"
|
| 338 |
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
| 339 |
image = Image.open(file_path).convert('RGB')
|
| 340 |
-
pdf_cache.update({
|
| 341 |
-
"images": [image],
|
| 342 |
-
"current_page": 0,
|
| 343 |
-
"total_pages": 1,
|
| 344 |
-
"file_type": "image",
|
| 345 |
-
"is_parsed": False,
|
| 346 |
-
"results": []
|
| 347 |
-
})
|
| 348 |
return image, "Page 1 / 1"
|
| 349 |
else:
|
| 350 |
return None, f"Unsupported file format: {file_ext}"
|
|
@@ -352,108 +323,28 @@ def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
|
| 352 |
print(f"Error loading file: {e}")
|
| 353 |
return None, f"Error loading file: {str(e)}"
|
| 354 |
|
| 355 |
-
@spaces.GPU()
|
| 356 |
-
def process_document(file_path, model_choice, max_tokens, min_pix, max_pix):
|
| 357 |
-
global pdf_cache
|
| 358 |
-
if not file_path:
|
| 359 |
-
return None, "Please upload a file first.", None
|
| 360 |
-
model, processor = models[model_choice]
|
| 361 |
-
image, page_info = load_file_for_preview(file_path)
|
| 362 |
-
if image is None:
|
| 363 |
-
return None, page_info, None
|
| 364 |
-
if pdf_cache["file_type"] == "pdf":
|
| 365 |
-
all_results = []
|
| 366 |
-
for i, img in enumerate(pdf_cache["images"]):
|
| 367 |
-
if model_choice == "dots.ocr":
|
| 368 |
-
raw_output = inference_dots_ocr(model, processor, img, prompt, max_tokens)
|
| 369 |
-
try:
|
| 370 |
-
layout_data = json.loads(raw_output)
|
| 371 |
-
processed_image = draw_layout_on_image(img, layout_data)
|
| 372 |
-
markdown_content = layoutjson2md(img, layout_data)
|
| 373 |
-
result = {
|
| 374 |
-
'processed_image': processed_image,
|
| 375 |
-
'markdown_content': markdown_content,
|
| 376 |
-
'layout_result': layout_data
|
| 377 |
-
}
|
| 378 |
-
except Exception:
|
| 379 |
-
result = {
|
| 380 |
-
'processed_image': img,
|
| 381 |
-
'markdown_content': raw_output,
|
| 382 |
-
'layout_result': None
|
| 383 |
-
}
|
| 384 |
-
else: # Dolphin
|
| 385 |
-
text = inference_dolphin(model, processor, img)
|
| 386 |
-
result = f"## Page {i+1}\n\n{text}" if text else "No text extracted"
|
| 387 |
-
all_results.append(result)
|
| 388 |
-
pdf_cache["results"] = all_results
|
| 389 |
-
pdf_cache["is_parsed"] = True
|
| 390 |
-
first_result = all_results[0]
|
| 391 |
-
if model_choice == "dots.ocr":
|
| 392 |
-
markdown_update = gr.update(value=first_result['markdown_content'], rtl=is_arabic_text(first_result['markdown_content']))
|
| 393 |
-
return first_result['processed_image'], markdown_update, first_result['layout_result']
|
| 394 |
-
else:
|
| 395 |
-
markdown_update = gr.update(value=first_result, rtl=is_arabic_text(first_result))
|
| 396 |
-
return None, markdown_update, None
|
| 397 |
-
else:
|
| 398 |
-
if model_choice == "dots.ocr":
|
| 399 |
-
raw_output = inference_dots_ocr(model, processor, image, prompt, max_tokens)
|
| 400 |
-
try:
|
| 401 |
-
layout_data = json.loads(raw_output)
|
| 402 |
-
processed_image = draw_layout_on_image(image, layout_data)
|
| 403 |
-
markdown_content = layoutjson2md(image, layout_data)
|
| 404 |
-
result = {
|
| 405 |
-
'processed_image': processed_image,
|
| 406 |
-
'markdown_content': markdown_content,
|
| 407 |
-
'layout_result': layout_data
|
| 408 |
-
}
|
| 409 |
-
except Exception:
|
| 410 |
-
result = {
|
| 411 |
-
'processed_image': image,
|
| 412 |
-
'markdown_content': raw_output,
|
| 413 |
-
'layout_result': None
|
| 414 |
-
}
|
| 415 |
-
pdf_cache["results"] = [result]
|
| 416 |
-
else: # Dolphin
|
| 417 |
-
text = inference_dolphin(model, processor, image)
|
| 418 |
-
result = text if text else "No text extracted"
|
| 419 |
-
pdf_cache["results"] = [result]
|
| 420 |
-
pdf_cache["is_parsed"] = True
|
| 421 |
-
if model_choice == "dots.ocr":
|
| 422 |
-
markdown_update = gr.update(value=result['markdown_content'], rtl=is_arabic_text(result['markdown_content']))
|
| 423 |
-
return result['processed_image'], markdown_update, result['layout_result']
|
| 424 |
-
else:
|
| 425 |
-
markdown_update = gr.update(value=result, rtl=is_arabic_text(result))
|
| 426 |
-
return None, markdown_update, None
|
| 427 |
-
|
| 428 |
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]:
|
|
|
|
| 429 |
global pdf_cache
|
| 430 |
if not pdf_cache["images"]:
|
| 431 |
return None, '<div class="page-info">No file loaded</div>', "No results yet", None, None
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
elif direction == "next":
|
| 435 |
-
pdf_cache["current_page"] = min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1)
|
| 436 |
index = pdf_cache["current_page"]
|
| 437 |
current_image_preview = pdf_cache["images"][index]
|
| 438 |
page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>'
|
| 439 |
-
|
|
|
|
|
|
|
| 440 |
result = pdf_cache["results"][index]
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
markdown_content = result
|
| 447 |
-
processed_img = None
|
| 448 |
-
layout_json = None
|
| 449 |
-
else:
|
| 450 |
-
markdown_content = "Page not processed yet"
|
| 451 |
-
processed_img = None
|
| 452 |
-
layout_json = None
|
| 453 |
-
markdown_update = gr.update(value=markdown_content, rtl=is_arabic_text(markdown_content))
|
| 454 |
-
return current_image_preview, page_info_html, markdown_update, processed_img, layout_json
|
| 455 |
|
| 456 |
def create_gradio_interface():
|
|
|
|
| 457 |
css = """
|
| 458 |
.main-container { max-width: 1400px; margin: 0 auto; }
|
| 459 |
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
|
|
@@ -471,75 +362,102 @@ def create_gradio_interface():
|
|
| 471 |
.model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; }
|
| 472 |
.status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; }
|
| 473 |
"""
|
| 474 |
-
|
|
|
|
| 475 |
gr.HTML("""
|
| 476 |
<div class="title" style="text-align: center">
|
| 477 |
-
<h1>Dot<span style="color: red;">●</span
|
| 478 |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
|
| 479 |
Advanced vision-language model for image/PDF to markdown document processing
|
| 480 |
</p>
|
| 481 |
</div>
|
| 482 |
""")
|
|
|
|
| 483 |
with gr.Row():
|
| 484 |
with gr.Column(scale=1):
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 490 |
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300)
|
| 491 |
with gr.Row():
|
| 492 |
-
prev_page_btn = gr.Button("
|
| 493 |
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
|
| 494 |
-
next_page_btn = gr.Button("Next
|
| 495 |
-
model_choice = gr.Radio(
|
| 496 |
-
choices=["dots.ocr", "Dolphin"],
|
| 497 |
-
label="Select Model",
|
| 498 |
-
value="dots.ocr"
|
| 499 |
-
)
|
| 500 |
with gr.Accordion("Advanced Settings", open=False):
|
| 501 |
max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens")
|
| 502 |
min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels")
|
| 503 |
max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels")
|
| 504 |
-
process_btn = gr.Button("
|
| 505 |
-
clear_btn = gr.Button("Clear
|
|
|
|
| 506 |
with gr.Column(scale=2):
|
| 507 |
with gr.Tabs():
|
| 508 |
-
with gr.Tab("
|
| 509 |
processed_image = gr.Image(label="Image with Layout Detection", type="pil", interactive=False, height=500)
|
| 510 |
-
with gr.Tab("
|
| 511 |
markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", height=500)
|
| 512 |
-
with gr.Tab("
|
| 513 |
json_output = gr.JSON(label="Layout Analysis Results", value=None)
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 520 |
def handle_file_upload(file_path):
|
| 521 |
image, page_info = load_file_for_preview(file_path)
|
| 522 |
return image, page_info
|
| 523 |
-
|
| 524 |
def clear_all():
|
| 525 |
global pdf_cache
|
| 526 |
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
|
| 527 |
return None, None, '<div class="page-info">No file loaded</div>', None, "Click 'Process Document' to see extracted content...", None
|
| 528 |
-
|
| 529 |
file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, page_info])
|
| 530 |
prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
|
| 531 |
next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
|
| 532 |
-
process_btn.click(
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
outputs=[processed_image, markdown_output, json_output]
|
| 536 |
-
)
|
| 537 |
-
clear_btn.click(
|
| 538 |
-
clear_all,
|
| 539 |
-
outputs=[file_input, image_preview, page_info, processed_image, markdown_output, json_output]
|
| 540 |
-
)
|
| 541 |
return demo
|
| 542 |
|
| 543 |
if __name__ == "__main__":
|
| 544 |
demo = create_gradio_interface()
|
| 545 |
-
demo.queue(max_size=
|
|
|
|
| 6 |
from io import BytesIO
|
| 7 |
from typing import Any, Dict, List, Optional, Tuple
|
| 8 |
import re
|
|
|
|
| 9 |
|
| 10 |
import fitz # PyMuPDF
|
| 11 |
import gradio as gr
|
| 12 |
import requests
|
| 13 |
import torch
|
|
|
|
|
|
|
| 14 |
from huggingface_hub import snapshot_download
|
| 15 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 16 |
from qwen_vl_utils import process_vision_info
|
| 17 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Constants
|
| 20 |
MIN_PIXELS = 3136
|
| 21 |
MAX_PIXELS = 11289600
|
| 22 |
IMAGE_FACTOR = 28
|
| 23 |
|
| 24 |
+
# Prompts
|
| 25 |
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
|
| 26 |
|
| 27 |
1. Bbox format: [x1, y1, x2, y2]
|
| 28 |
+
|
| 29 |
+
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
|
| 30 |
+
|
| 31 |
3. Text Extraction & Formatting Rules:
|
| 32 |
+
- Picture: For the 'Picture' category, the text field should be omitted.
|
| 33 |
+
- Formula: Format its text as LaTeX.
|
| 34 |
+
- Table: Format its text as HTML.
|
| 35 |
+
- All Others (Text, Title, etc.): Format their text as Markdown.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
4. Constraints:
|
| 38 |
+
- The output text must be the original text from the image, with no translation.
|
| 39 |
+
- All layout elements must be sorted according to human reading order.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
5. Final Output: The entire output must be a single JSON object.
|
| 42 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# Utility Functions
|
| 45 |
def round_by_factor(number: int, factor: int) -> int:
|
| 46 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
| 47 |
return round(number / factor) * factor
|
| 48 |
|
| 49 |
+
def smart_resize(
|
| 50 |
+
height: int,
|
| 51 |
+
width: int,
|
| 52 |
+
factor: int = 28,
|
| 53 |
+
min_pixels: int = 3136,
|
| 54 |
+
max_pixels: int = 11289600,
|
| 55 |
+
):
|
| 56 |
+
"""Rescales the image so that dimensions are divisible by 'factor', within pixel range, maintaining aspect ratio."""
|
| 57 |
if max(height, width) / min(height, width) > 200:
|
| 58 |
raise ValueError(f"Aspect ratio must be < 200, got {max(height, width) / min(height, width)}")
|
| 59 |
h_bar = max(factor, round_by_factor(height, factor))
|
| 60 |
w_bar = max(factor, round_by_factor(width, factor))
|
| 61 |
+
|
| 62 |
if h_bar * w_bar > max_pixels:
|
| 63 |
beta = math.sqrt((height * width) / max_pixels)
|
| 64 |
h_bar = round_by_factor(height / beta, factor)
|
|
|
|
| 70 |
return h_bar, w_bar
|
| 71 |
|
| 72 |
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
|
| 73 |
+
"""Fetch and process an image."""
|
| 74 |
if isinstance(image_input, str):
|
| 75 |
if image_input.startswith(("http://", "https://")):
|
| 76 |
response = requests.get(image_input)
|
|
|
|
| 81 |
image = image_input.convert('RGB')
|
| 82 |
else:
|
| 83 |
raise ValueError(f"Invalid image input type: {type(image_input)}")
|
| 84 |
+
|
| 85 |
+
if min_pixels is not None or max_pixels is not None:
|
| 86 |
min_pixels = min_pixels or MIN_PIXELS
|
| 87 |
max_pixels = max_pixels or MAX_PIXELS
|
| 88 |
+
height, width = smart_resize(
|
| 89 |
+
image.height,
|
| 90 |
+
image.width,
|
| 91 |
+
factor=IMAGE_FACTOR,
|
| 92 |
+
min_pixels=min_pixels,
|
| 93 |
+
max_pixels=max_pixels
|
| 94 |
+
)
|
| 95 |
image = image.resize((width, height), Image.LANCZOS)
|
| 96 |
+
|
| 97 |
return image
|
| 98 |
|
| 99 |
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
| 100 |
+
"""Load images from PDF file."""
|
| 101 |
images = []
|
| 102 |
try:
|
| 103 |
pdf_document = fitz.open(pdf_path)
|
| 104 |
for page_num in range(len(pdf_document)):
|
| 105 |
page = pdf_document.load_page(page_num)
|
| 106 |
+
mat = fitz.Matrix(2.0, 2.0) # Increase resolution
|
| 107 |
pix = page.get_pixmap(matrix=mat)
|
| 108 |
img_data = pix.tobytes("ppm")
|
| 109 |
image = Image.open(BytesIO(img_data)).convert('RGB')
|
|
|
|
| 115 |
return images
|
| 116 |
|
| 117 |
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
|
| 118 |
+
"""Draw layout bounding boxes on image."""
|
| 119 |
img_copy = image.copy()
|
| 120 |
draw = ImageDraw.Draw(img_copy)
|
| 121 |
+
|
| 122 |
colors = {
|
| 123 |
+
'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1',
|
| 124 |
+
'List-item': '#96CEB4', 'Page-footer': '#FFEAA7', 'Page-header': '#DDA0DD',
|
| 125 |
+
'Picture': '#FFD93D', 'Section-header': '#6C5CE7', 'Table': '#FD79A8',
|
| 126 |
+
'Text': '#74B9FF', 'Title': '#E17055'
|
| 127 |
}
|
| 128 |
+
|
| 129 |
try:
|
| 130 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12) or ImageFont.load_default()
|
|
|
|
|
|
|
|
|
|
| 131 |
for item in layout_data:
|
| 132 |
if 'bbox' in item and 'category' in item:
|
| 133 |
bbox = item['bbox']
|
| 134 |
category = item['category']
|
| 135 |
color = colors.get(category, '#000000')
|
| 136 |
+
|
| 137 |
draw.rectangle(bbox, outline=color, width=2)
|
| 138 |
+
|
| 139 |
label = category
|
| 140 |
label_bbox = draw.textbbox((0, 0), label, font=font)
|
| 141 |
+
label_width, label_height = label_bbox[2] - label_bbox[0], label_bbox[3] - label_bbox[1]
|
| 142 |
+
|
| 143 |
+
label_x, label_y = bbox[0], max(0, bbox[1] - label_height - 2)
|
|
|
|
| 144 |
draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 2], fill=color)
|
| 145 |
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
|
| 146 |
except Exception as e:
|
| 147 |
print(f"Error drawing layout: {e}")
|
| 148 |
+
|
| 149 |
return img_copy
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
|
| 152 |
+
"""Convert layout JSON to markdown format."""
|
| 153 |
import base64
|
| 154 |
+
|
| 155 |
markdown_lines = []
|
| 156 |
try:
|
| 157 |
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
|
|
|
|
| 159 |
category = item.get('category', '')
|
| 160 |
text = item.get(text_key, '')
|
| 161 |
bbox = item.get('bbox', [])
|
| 162 |
+
|
| 163 |
+
if category == 'Picture' and bbox and len(bbox) == 4:
|
| 164 |
+
try:
|
| 165 |
+
x1, y1, x2, y2 = [max(0, int(x1)), max(0, int(y1)), min(image.width, int(x2)), min(image.height, int(y2))]
|
| 166 |
+
if x2 > x1 and y2 > y1:
|
| 167 |
+
cropped_img = image.crop((x1, y1, x2, y2))
|
| 168 |
+
buffer = BytesIO()
|
| 169 |
+
cropped_img.save(buffer, format='PNG')
|
| 170 |
+
img_data = base64.b64encode(buffer.getvalue()).decode()
|
| 171 |
+
markdown_lines.append(f"\n")
|
| 172 |
+
else:
|
| 173 |
+
markdown_lines.append("\n")
|
| 174 |
+
except Exception as e:
|
| 175 |
+
print(f"Error processing image region: {e}")
|
| 176 |
+
markdown_lines.append("\n")
|
|
|
|
|
|
|
| 177 |
elif not text:
|
| 178 |
continue
|
| 179 |
elif category == 'Title':
|
|
|
|
| 185 |
elif category == 'List-item':
|
| 186 |
markdown_lines.append(f"- {text}\n")
|
| 187 |
elif category == 'Table':
|
| 188 |
+
markdown_lines.append(f"{text}\n" if text.strip().startswith('<') else f"**Table:** {text}\n")
|
|
|
|
|
|
|
|
|
|
| 189 |
elif category == 'Formula':
|
| 190 |
+
markdown_lines.append(f"$$\n{text}\n$$\n" if text.strip().startswith('$') or '\\' in text else f"**Formula:** {text}\n")
|
|
|
|
|
|
|
|
|
|
| 191 |
elif category == 'Caption':
|
| 192 |
markdown_lines.append(f"*{text}*\n")
|
| 193 |
elif category == 'Footnote':
|
|
|
|
| 200 |
except Exception as e:
|
| 201 |
print(f"Error converting to markdown: {e}")
|
| 202 |
return str(layout_data)
|
| 203 |
+
|
| 204 |
return "\n".join(markdown_lines)
|
| 205 |
|
| 206 |
+
# Load Models
|
| 207 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 208 |
+
|
| 209 |
+
# Load dot.ocr
|
| 210 |
+
model_id = "rednote-hilab/dots.ocr"
|
| 211 |
+
model_path = "./models/dots-ocr-local"
|
| 212 |
+
snapshot_download(repo_id=model_id, local_dir=model_path, local_dir_use_symlinks=False)
|
| 213 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 214 |
+
model_path,
|
| 215 |
+
attn_implementation="flash_attention_2",
|
| 216 |
+
torch_dtype=torch.bfloat16,
|
| 217 |
+
device_map="auto",
|
| 218 |
+
trust_remote_code=True
|
| 219 |
+
)
|
| 220 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
| 221 |
+
|
| 222 |
+
# Load Camel-Doc-OCR-062825
|
| 223 |
+
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
|
| 224 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 225 |
+
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 226 |
+
MODEL_ID_M,
|
| 227 |
+
trust_remote_code=True,
|
| 228 |
+
torch_dtype=torch.float16
|
| 229 |
+
).to(device).eval()
|
| 230 |
+
|
| 231 |
+
# Load Megalodon-OCR-Sync-0713
|
| 232 |
+
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
|
| 233 |
+
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
|
| 234 |
+
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 235 |
+
MODEL_ID_T,
|
| 236 |
+
trust_remote_code=True,
|
| 237 |
+
torch_dtype=torch.float16
|
| 238 |
+
).to(device).eval()
|
| 239 |
+
|
| 240 |
+
# Model Dictionary
|
| 241 |
+
model_dict = {
|
| 242 |
+
"dot.ocr": {"model": model, "processor": processor, "process_layout": True},
|
| 243 |
+
"Camel-Doc-OCR-062825": {"model": model_m, "processor": processor_m, "process_layout": False},
|
| 244 |
+
"Megalodon-OCR-Sync-0713": {"model": model_t, "processor": processor_t, "process_layout": False},
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
# Global State
|
| 248 |
+
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
|
| 249 |
+
|
| 250 |
+
@spaces.GPU()
|
| 251 |
+
def inference(model, processor, image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str:
|
| 252 |
+
"""Run inference on an image with the given prompt using the specified model and processor."""
|
| 253 |
+
try:
|
| 254 |
+
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
|
| 255 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 256 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 257 |
+
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt").to(device)
|
| 258 |
+
|
| 259 |
+
with torch.no_grad():
|
| 260 |
+
generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False, temperature=0.1)
|
| 261 |
+
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
| 262 |
+
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
| 263 |
+
return output_text[0] if output_text else ""
|
| 264 |
+
except Exception as e:
|
| 265 |
+
print(f"Error during inference: {e}")
|
| 266 |
+
traceback.print_exc()
|
| 267 |
+
return f"Error during inference: {str(e)}"
|
| 268 |
+
|
| 269 |
+
def process_image(
|
| 270 |
+
image: Image.Image,
|
| 271 |
+
model,
|
| 272 |
+
processor,
|
| 273 |
+
process_layout: bool,
|
| 274 |
+
min_pixels: Optional[int] = None,
|
| 275 |
+
max_pixels: Optional[int] = None
|
| 276 |
+
) -> Dict[str, Any]:
|
| 277 |
+
"""Process a single image with the specified model and processor."""
|
| 278 |
+
try:
|
| 279 |
+
if min_pixels is not None or max_pixels is not None:
|
| 280 |
+
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
|
| 281 |
+
|
| 282 |
+
raw_output = inference(model, processor, image, prompt)
|
| 283 |
+
result = {'original_image': image, 'raw_output': raw_output, 'processed_image': image, 'layout_result': None, 'markdown_content': raw_output}
|
| 284 |
+
|
| 285 |
+
if process_layout:
|
| 286 |
+
try:
|
| 287 |
+
layout_data = json.loads(raw_output)
|
| 288 |
+
result['layout_result'] = layout_data
|
| 289 |
+
result['processed_image'] = draw_layout_on_image(image, layout_data)
|
| 290 |
+
result['markdown_content'] = layoutjson2md(image, layout_data, text_key='text')
|
| 291 |
+
except json.JSONDecodeError:
|
| 292 |
+
print("Failed to parse JSON output, using raw output")
|
| 293 |
+
except Exception as e:
|
| 294 |
+
print(f"Error processing layout: {e}")
|
| 295 |
+
|
| 296 |
+
return result
|
| 297 |
+
except Exception as e:
|
| 298 |
+
print(f"Error processing image: {e}")
|
| 299 |
+
traceback.print_exc()
|
| 300 |
+
return {'original_image': image, 'raw_output': str(e), 'processed_image': image, 'layout_result': None, 'markdown_content': str(e)}
|
| 301 |
+
|
| 302 |
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
| 303 |
+
"""Load file for preview (supports PDF and images)."""
|
| 304 |
global pdf_cache
|
| 305 |
if not file_path or not os.path.exists(file_path):
|
| 306 |
return None, "No file selected"
|
| 307 |
+
|
| 308 |
file_ext = os.path.splitext(file_path)[1].lower()
|
| 309 |
try:
|
| 310 |
if file_ext == '.pdf':
|
| 311 |
images = load_images_from_pdf(file_path)
|
| 312 |
if not images:
|
| 313 |
return None, "Failed to load PDF"
|
| 314 |
+
pdf_cache.update({"images": images, "current_page": 0, "total_pages": len(images), "file_type": "pdf", "is_parsed": False, "results": []})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
return images[0], f"Page 1 / {len(images)}"
|
| 316 |
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
| 317 |
image = Image.open(file_path).convert('RGB')
|
| 318 |
+
pdf_cache.update({"images": [image], "current_page": 0, "total_pages": 1, "file_type": "image", "is_parsed": False, "results": []})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
return image, "Page 1 / 1"
|
| 320 |
else:
|
| 321 |
return None, f"Unsupported file format: {file_ext}"
|
|
|
|
| 323 |
print(f"Error loading file: {e}")
|
| 324 |
return None, f"Error loading file: {str(e)}"
|
| 325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]:
|
| 327 |
+
"""Navigate through PDF pages and update outputs."""
|
| 328 |
global pdf_cache
|
| 329 |
if not pdf_cache["images"]:
|
| 330 |
return None, '<div class="page-info">No file loaded</div>', "No results yet", None, None
|
| 331 |
+
|
| 332 |
+
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1) if direction == "prev" else min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1)
|
|
|
|
|
|
|
| 333 |
index = pdf_cache["current_page"]
|
| 334 |
current_image_preview = pdf_cache["images"][index]
|
| 335 |
page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>'
|
| 336 |
+
|
| 337 |
+
markdown_content, processed_img, layout_json = "Page not processed yet", None, None
|
| 338 |
+
if pdf_cache["is_parsed"] and index < len(pdf_cache["results"]) and pdf_cache["results"][index]:
|
| 339 |
result = pdf_cache["results"][index]
|
| 340 |
+
markdown_content = result.get('markdown_content') or result.get('raw_output', 'No content available')
|
| 341 |
+
processed_img = result.get('processed_image')
|
| 342 |
+
layout_json = result.get('layout_result')
|
| 343 |
+
|
| 344 |
+
return current_image_preview, page_info_html, markdown_content, processed_img, layout_json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
|
| 346 |
def create_gradio_interface():
|
| 347 |
+
"""Create the Gradio interface."""
|
| 348 |
css = """
|
| 349 |
.main-container { max-width: 1400px; margin: 0 auto; }
|
| 350 |
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
|
|
|
|
| 362 |
.model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; }
|
| 363 |
.status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; }
|
| 364 |
"""
|
| 365 |
+
|
| 366 |
+
with gr.Blocks(theme="bethecloud/storj_theme", css=css, title="Dot●OCR Comparator") as demo:
|
| 367 |
gr.HTML("""
|
| 368 |
<div class="title" style="text-align: center">
|
| 369 |
+
<h1>Dot<span style="color: red;">●</span>OCR Comparator</h1>
|
| 370 |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
|
| 371 |
Advanced vision-language model for image/PDF to markdown document processing
|
| 372 |
</p>
|
| 373 |
</div>
|
| 374 |
""")
|
| 375 |
+
|
| 376 |
with gr.Row():
|
| 377 |
with gr.Column(scale=1):
|
| 378 |
+
model_choice = gr.Radio(
|
| 379 |
+
choices=["dot.ocr", "Camel-Doc-OCR-062825", "Megalodon-OCR-Sync-0713"],
|
| 380 |
+
label="Select Model",
|
| 381 |
+
value="dot.ocr"
|
| 382 |
)
|
| 383 |
+
file_input = gr.File(label="Upload Image or PDF", file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"], type="filepath")
|
| 384 |
+
with gr.Row():
|
| 385 |
+
examples = gr.Examples(
|
| 386 |
+
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
|
| 387 |
+
inputs=file_input,
|
| 388 |
+
label="Example Documents"
|
| 389 |
+
)
|
| 390 |
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300)
|
| 391 |
with gr.Row():
|
| 392 |
+
prev_page_btn = gr.Button("◀ Previous", size="md")
|
| 393 |
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
|
| 394 |
+
next_page_btn = gr.Button("Next ▶", size="md")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
with gr.Accordion("Advanced Settings", open=False):
|
| 396 |
max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens")
|
| 397 |
min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels")
|
| 398 |
max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels")
|
| 399 |
+
process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
|
| 400 |
+
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
| 401 |
+
|
| 402 |
with gr.Column(scale=2):
|
| 403 |
with gr.Tabs():
|
| 404 |
+
with gr.Tab("🖼️ Processed Image"):
|
| 405 |
processed_image = gr.Image(label="Image with Layout Detection", type="pil", interactive=False, height=500)
|
| 406 |
+
with gr.Tab("📝 Extracted Content"):
|
| 407 |
markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", height=500)
|
| 408 |
+
with gr.Tab("📋 Layout JSON"):
|
| 409 |
json_output = gr.JSON(label="Layout Analysis Results", value=None)
|
| 410 |
+
|
| 411 |
+
def process_document(file_path, model_choice, max_tokens, min_pix, max_pix):
|
| 412 |
+
"""Process the uploaded document with the selected model."""
|
| 413 |
+
global pdf_cache
|
| 414 |
+
if not file_path:
|
| 415 |
+
return None, "Please upload a file first.", None
|
| 416 |
+
if model_choice not in model_dict:
|
| 417 |
+
return None, "Invalid model selected", None
|
| 418 |
+
|
| 419 |
+
selected_model = model_dict[model_choice]["model"]
|
| 420 |
+
selected_processor = model_dict[model_choice]["processor"]
|
| 421 |
+
process_layout = model_dict[model_choice]["process_layout"]
|
| 422 |
+
|
| 423 |
+
image, page_info = load_file_for_preview(file_path)
|
| 424 |
+
if image is None:
|
| 425 |
+
return None, page_info, None
|
| 426 |
+
|
| 427 |
+
if pdf_cache["file_type"] == "pdf":
|
| 428 |
+
all_results, all_markdown = [], []
|
| 429 |
+
for i, img in enumerate(pdf_cache["images"]):
|
| 430 |
+
result = process_image(img, selected_model, selected_processor, process_layout, int(min_pix) if min_pix else None, int(max_pix) if max_pix else None)
|
| 431 |
+
all_results.append(result)
|
| 432 |
+
if result.get('markdown_content'):
|
| 433 |
+
all_markdown.append(f"## Page {i+1}\n\n{result['markdown_content']}")
|
| 434 |
+
pdf_cache["results"] = all_results
|
| 435 |
+
pdf_cache["is_parsed"] = True
|
| 436 |
+
first_result = all_results[0]
|
| 437 |
+
return first_result['processed_image'], "\n\n---\n\n".join(all_markdown), first_result['layout_result']
|
| 438 |
+
else:
|
| 439 |
+
result = process_image(image, selected_model, selected_processor, process_layout, int(min_pix) if min_pix else None, int(max_pix) if max_pix else None)
|
| 440 |
+
pdf_cache["results"] = [result]
|
| 441 |
+
pdf_cache["is_parsed"] = True
|
| 442 |
+
return result['processed_image'], result['markdown_content'] or "No content extracted", result['layout_result']
|
| 443 |
+
|
| 444 |
def handle_file_upload(file_path):
|
| 445 |
image, page_info = load_file_for_preview(file_path)
|
| 446 |
return image, page_info
|
| 447 |
+
|
| 448 |
def clear_all():
|
| 449 |
global pdf_cache
|
| 450 |
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
|
| 451 |
return None, None, '<div class="page-info">No file loaded</div>', None, "Click 'Process Document' to see extracted content...", None
|
| 452 |
+
|
| 453 |
file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, page_info])
|
| 454 |
prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
|
| 455 |
next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
|
| 456 |
+
process_btn.click(process_document, inputs=[file_input, model_choice, max_new_tokens, min_pixels, max_pixels], outputs=[processed_image, markdown_output, json_output])
|
| 457 |
+
clear_btn.click(clear_all, outputs=[file_input, image_preview, page_info, processed_image, markdown_output, json_output])
|
| 458 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
return demo
|
| 460 |
|
| 461 |
if __name__ == "__main__":
|
| 462 |
demo = create_gradio_interface()
|
| 463 |
+
demo.queue(max_size=50).launch(share=False, debug=True, show_error=True)
|