prithivMLmods commited on
Commit
1b711ab
·
verified ·
1 Parent(s): 1529ebd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +101 -9
app.py CHANGED
@@ -17,6 +17,10 @@ import requests
17
  import torch
18
  from PIL import Image
19
  import fitz
 
 
 
 
20
 
21
  from transformers import (
22
  Qwen2_5_VLForConditionalGeneration,
@@ -32,7 +36,7 @@ from transformers import (
32
  LlavaOnevisionProcessor,
33
  )
34
 
35
- from transformers.image_utils import load_image
36
 
37
  from reportlab.lib.pagesizes import A4
38
  from reportlab.lib.styles import getSampleStyleSheet
@@ -54,6 +58,75 @@ if torch.cuda.is_available():
54
 
55
  print("Using device:", device)
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  # --- Model Loading ---
58
  MODEL_ID_M = "LiquidAI/LFM2-VL-450M"
59
  processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
@@ -100,12 +173,6 @@ model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
100
  MODEL_ID_X, trust_remote_code=True, torch_dtype=torch.float16
101
  ).to(device).eval()
102
 
103
- MODEL_ID_Z = "Vchitect/ShotVL-3B"
104
- processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
105
- model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
106
- MODEL_ID_Z, trust_remote_code=True, torch_dtype=torch.float16
107
- ).to(device).eval()
108
-
109
  # --- Moondream2 Model Loading ---
110
  MODEL_ID_MD = "vikhyatk/moondream2"
111
  REVISION_MD = "2025-06-21"
@@ -160,6 +227,15 @@ model_lo = LlavaOnevisionForConditionalGeneration.from_pretrained(
160
  torch_dtype=torch.float16
161
  ).to(device).eval()
162
 
 
 
 
 
 
 
 
 
 
163
 
164
  # --- PDF Generation and Preview Utility Function ---
165
  def generate_and_preview_pdf(image: Image.Image, text_content: str, font_size: int, line_spacing: float, alignment: str, image_size: str):
@@ -261,6 +337,23 @@ def process_document_stream(
261
  )
262
  yield answer, answer
263
  return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264
 
265
  processor = None
266
  model = None
@@ -274,7 +367,6 @@ def process_document_stream(
274
  else:
275
  if model_name == "LFM2-VL-450M(fast)": processor, model = processor_m, model_m
276
  elif model_name == "LFM2-VL-1.6B(fast)": processor, model = processor_t, model_t
277
- elif model_name == "ShotVL-3B(cinematic)": processor, model = processor_z, model_z
278
  elif model_name == "SmolVLM-Instruct-250M(smol)": processor, model = processor_c, model_c
279
  elif model_name == "MonkeyOCR-pro-1.2B(ocr)": processor, model = processor_g, model_g
280
  elif model_name == "VLAA-Thinker-Qwen2VL-2B(reason)": processor, model = processor_i, model_i
@@ -343,7 +435,7 @@ def create_gradio_interface():
343
  with gr.Column(scale=1):
344
  model_choice = gr.Dropdown(
345
  choices=["LFM2-VL-450M(fast)", "LFM2-VL-1.6B(fast)", "SmolVLM-Instruct-250M(smol)", "Moondream2(vision)",
346
- "ShotVL-3B(cinematic)", "Megalodon-OCR-Sync-0713(ocr)",
347
  "VLAA-Thinker-Qwen2VL-2B(reason)", "MonkeyOCR-pro-1.2B(ocr)",
348
  "Qwen2.5-VL-3B-Abliterated-Caption-it(caption)", "Nanonets-OCR-s(ocr)",
349
  "LMM-R1-MGT-PerceReason(reason)", "OCRFlux-3B(ocr)", "TBAC-VLR1-3B(open-r1)",
 
17
  import torch
18
  from PIL import Image
19
  import fitz
20
+ import numpy as np
21
+ import torchvision.transforms as T
22
+ from torchvision.transforms.functional import InterpolationMode
23
+
24
 
25
  from transformers import (
26
  Qwen2_5_VLForConditionalGeneration,
 
36
  LlavaOnevisionProcessor,
37
  )
38
 
39
+ from transformers.image_utils import load_image as hf_load_image
40
 
41
  from reportlab.lib.pagesizes import A4
42
  from reportlab.lib.styles import getSampleStyleSheet
 
58
 
59
  print("Using device:", device)
60
 
61
+ # --- InternVL3_5-2B-MPO Preprocessing Functions ---
62
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
63
+ IMAGENET_STD = (0.229, 0.224, 0.225)
64
+
65
+ def build_transform(input_size):
66
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
67
+ transform = T.Compose([
68
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
69
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
70
+ T.ToTensor(),
71
+ T.Normalize(mean=MEAN, std=STD)
72
+ ])
73
+ return transform
74
+
75
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
76
+ best_ratio_diff = float('inf')
77
+ best_ratio = (1, 1)
78
+ area = width * height
79
+ for ratio in target_ratios:
80
+ target_aspect_ratio = ratio[0] / ratio[1]
81
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
82
+ if ratio_diff < best_ratio_diff:
83
+ best_ratio_diff = ratio_diff
84
+ best_ratio = ratio
85
+ elif ratio_diff == best_ratio_diff:
86
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
87
+ best_ratio = ratio
88
+ return best_ratio
89
+
90
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
91
+ orig_width, orig_height = image.size
92
+ aspect_ratio = orig_width / orig_height
93
+
94
+ target_ratios = set(
95
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
96
+ i * j <= max_num and i * j >= min_num)
97
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
98
+
99
+ target_aspect_ratio = find_closest_aspect_ratio(
100
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
101
+
102
+ target_width = image_size * target_aspect_ratio[0]
103
+ target_height = image_size * target_aspect_ratio[1]
104
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
105
+
106
+ resized_img = image.resize((target_width, target_height))
107
+ processed_images = []
108
+ for i in range(blocks):
109
+ box = (
110
+ (i % (target_width // image_size)) * image_size,
111
+ (i // (target_width // image_size)) * image_size,
112
+ ((i % (target_width // image_size)) + 1) * image_size,
113
+ ((i // (target_width // image_size)) + 1) * image_size
114
+ )
115
+ split_img = resized_img.crop(box)
116
+ processed_images.append(split_img)
117
+ assert len(processed_images) == blocks
118
+ if use_thumbnail and len(processed_images) != 1:
119
+ thumbnail_img = image.resize((image_size, image_size))
120
+ processed_images.append(thumbnail_img)
121
+ return processed_images
122
+
123
+ def load_image_internvl(image, input_size=448, max_num=12):
124
+ transform = build_transform(input_size=input_size)
125
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
126
+ pixel_values = [transform(img) for img in images]
127
+ pixel_values = torch.stack(pixel_values)
128
+ return pixel_values
129
+
130
  # --- Model Loading ---
131
  MODEL_ID_M = "LiquidAI/LFM2-VL-450M"
132
  processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
 
173
  MODEL_ID_X, trust_remote_code=True, torch_dtype=torch.float16
174
  ).to(device).eval()
175
 
 
 
 
 
 
 
176
  # --- Moondream2 Model Loading ---
177
  MODEL_ID_MD = "vikhyatk/moondream2"
178
  REVISION_MD = "2025-06-21"
 
227
  torch_dtype=torch.float16
228
  ).to(device).eval()
229
 
230
+ # --- New Model: OpenGVLab/InternVL3_5-2B-MPO ---
231
+ MODEL_ID_IV = 'OpenGVLab/InternVL3_5-2B-MPO'
232
+ model_iv = AutoModel.from_pretrained(
233
+ MODEL_ID_IV,
234
+ torch_dtype=torch.bfloat16,
235
+ trust_remote_code=True,
236
+ device_map="auto").eval()
237
+ tokenizer_iv = AutoTokenizer.from_pretrained(MODEL_ID_IV, trust_remote_code=True, use_fast=False)
238
+
239
 
240
  # --- PDF Generation and Preview Utility Function ---
241
  def generate_and_preview_pdf(image: Image.Image, text_content: str, font_size: int, line_spacing: float, alignment: str, image_size: str):
 
337
  )
338
  yield answer, answer
339
  return
340
+
341
+ # --- Special Handling for InternVL ---
342
+ if model_name == "OpenGVLab/InternVL3_5-2B-MPO(reason)":
343
+ pixel_values = load_image_internvl(image, max_num=12).to(torch.bfloat16).to(device)
344
+ generation_config = dict(
345
+ max_new_tokens=max_new_tokens,
346
+ do_sample=True if temperature > 0 else False,
347
+ temperature=temperature,
348
+ top_p=top_p,
349
+ top_k=top_k,
350
+ repetition_penalty=repetition_penalty,
351
+ )
352
+ question = f"<image>\n{prompt_input}"
353
+ response = model_iv.chat(tokenizer_iv, pixel_values, question, generation_config)
354
+ yield response, response
355
+ return
356
+
357
 
358
  processor = None
359
  model = None
 
367
  else:
368
  if model_name == "LFM2-VL-450M(fast)": processor, model = processor_m, model_m
369
  elif model_name == "LFM2-VL-1.6B(fast)": processor, model = processor_t, model_t
 
370
  elif model_name == "SmolVLM-Instruct-250M(smol)": processor, model = processor_c, model_c
371
  elif model_name == "MonkeyOCR-pro-1.2B(ocr)": processor, model = processor_g, model_g
372
  elif model_name == "VLAA-Thinker-Qwen2VL-2B(reason)": processor, model = processor_i, model_i
 
435
  with gr.Column(scale=1):
436
  model_choice = gr.Dropdown(
437
  choices=["LFM2-VL-450M(fast)", "LFM2-VL-1.6B(fast)", "SmolVLM-Instruct-250M(smol)", "Moondream2(vision)",
438
+ "OpenGVLab/InternVL3_5-2B-MPO(reason)", "Megalodon-OCR-Sync-0713(ocr)",
439
  "VLAA-Thinker-Qwen2VL-2B(reason)", "MonkeyOCR-pro-1.2B(ocr)",
440
  "Qwen2.5-VL-3B-Abliterated-Caption-it(caption)", "Nanonets-OCR-s(ocr)",
441
  "LMM-R1-MGT-PerceReason(reason)", "OCRFlux-3B(ocr)", "TBAC-VLR1-3B(open-r1)",