prithivMLmods's picture
update app (#6)
05f9a90 verified
raw
history blame
15 kB
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoModel,
AutoTokenizer,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# --- Model Loading ---
# Load Qwen2.5-VL-7B-Instruct
MODEL_ID_M = "Qwen/Qwen2.5-VL-7B-Instruct"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Qwen2.5-VL-3B-Instruct
MODEL_ID_X = "Qwen/Qwen2.5-VL-3B-Instruct"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Qwen2.5-VL-7B-Abliterated-Caption-it
MODEL_ID_Q = "prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it"
processor_q = AutoProcessor.from_pretrained(MODEL_ID_Q, trust_remote_code=True)
model_q = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_Q,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load prithivMLmods/DeepCaption-VLA-7B
MODEL_ID_DC = "prithivMLmods/DeepCaption-VLA-7B"
processor_dc = AutoProcessor.from_pretrained(MODEL_ID_DC, trust_remote_code=True)
model_dc = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_DC,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# --- System Prompt for DeepCaption-VLA-7B ---
CAPTION_SYSTEM_PROMPT = """
You are an AI assistant that rigorously follows this response protocol:
1. For every input image, your primary task is to write a **precise caption**. The caption must capture the **essence of the image** in clear, concise, and contextually accurate language.
2. Along with the caption, provide a structured set of **attributes** that describe the visual elements. Attributes should include details such as objects, people, actions, colors, environment, mood, and other notable characteristics.
3. Always include a **class_name** field. This must represent the **core theme or main subject** of the image in a compact format.
- Use the syntax: `{class_name==write_the_core_theme}`
- Example: `{class_name==dog_playing}` or `{class_name==city_sunset}`
4. Maintain the following strict format in your output:
- **Caption:** <one-sentence description>
- **Attributes:** <comma-separated list of visual attributes>
- **{class_name==core_theme}**
5. Ensure captions are **precise, neutral, and descriptive**, avoiding unnecessary elaboration or subjective interpretation unless explicitly required.
6. Do not reference the rules or instructions in the output. Only return the formatted caption, attributes, and class_name.
""".strip()
def downsample_video(video_path):
"""
Downsamples the video to evenly spaced frames.
Each frame is returned as a PIL image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
# Use a denser sampling for better video understanding
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for image input.
Yields raw text and Markdown-formatted text.
"""
processor = None
model = None
if model_name == "Qwen2.5-VL-7B-Instruct":
processor = processor_m
model = model_m
elif model_name == "Qwen2.5-VL-3B-Instruct":
processor = processor_x
model = model_x
elif model_name == "Qwen2.5-VL-7B-Abliterated-Caption-it":
processor = processor_q
model = model_q
elif model_name == "DeepCaption-VLA-7B":
processor = processor_dc
model = model_dc
# Prepend system prompt for this model
text = f"{CAPTION_SYSTEM_PROMPT}\n\n{text}"
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"do_sample": True,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for video input.
Yields raw text and Markdown-formatted text.
"""
processor = None
model = None
if model_name == "Qwen2.5-VL-7B-Instruct":
processor = processor_m
model = model_m
elif model_name == "Qwen2.5-VL-3B-Instruct":
processor = processor_x
model = model_x
elif model_name == "Qwen2.5-VL-7B-Abliterated-Caption-it":
processor = processor_q
model = model_q
elif model_name == "DeepCaption-VLA-7B":
processor = processor_dc
model = model_dc
# Prepend system prompt for this model
text = f"{CAPTION_SYSTEM_PROMPT}\n\n{text}"
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames = downsample_video(video_path)
# Create the message structure with a system prompt and user query
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": text}]}
]
# Add each frame to the user content
for frame in frames:
image, timestamp = frame
messages[1]["content"].append({"type": "text", "text": f"Frame at {timestamp}s:"})
messages[1]["content"].append({"type": "image", "image": image})
# Prepare inputs for the model
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
# Define examples for image and video inference
image_examples = [
["Provide a detailed caption for the image..", "images/A.jpg"],
["Explain the pie-chart in detail.", "images/2.jpg"],
["Jsonify Data.", "images/1.jpg"],
]
video_examples = [
["Explain the ad in detail", "videos/1.mp4"],
["Identify the main actions in the video", "videos/2.mp4"],
["Identify the main scenes in the video", "videos/3.mp4"]
]
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **[Qwen2.5-VL-Outpost](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column():
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Output")
output = gr.Textbox(label="Raw Output", interactive=False, lines=2, scale=2)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown()
model_choice = gr.Radio(
choices=[
"Qwen2.5-VL-7B-Instruct",
"Qwen2.5-VL-3B-Instruct",
"Qwen2.5-VL-7B-Abliterated-Caption-it",
"DeepCaption-VLA-7B"
],
label="Select Model",
value="Qwen2.5-VL-7B-Instruct"
)
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL/discussions)")
gr.Markdown("> [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct): The Qwen2.5-VL-7B-Instruct model is a multimodal AI model developed by Alibaba Cloud that excels at understanding both text and images. It's a Vision-Language Model (VLM) designed to handle various visual understanding tasks, including image understanding, video analysis, and even multilingual support.")
gr.Markdown("> [Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct): Qwen2.5-VL-3B-Instruct is an instruction-tuned vision-language model from Alibaba Cloud, built upon the Qwen2-VL series. It excels at understanding and generating text related to both visual and textual inputs, making it capable of tasks like image captioning, visual question answering, and object localization. The model also supports long video understanding and structured data extraction")
gr.Markdown("> [Qwen2.5-VL-7B-Abliterated-Caption-it](https://huggingface.co/prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it): Qwen2.5-VL-7B-Abliterated-Caption-it is a fine-tuned version of Qwen2.5-VL-7B-Instruct, optimized for Abliterated Captioning / Uncensored Captioning. This model excels at generating detailed, context-rich, and high-fidelity captions across diverse image categories and variational aspect ratios, offering robust visual understanding without filtering or censorship.")
gr.Markdown("> [prithivMLmods/DeepCaption-VLA-7B](https://huggingface.co/prithivMLmods/DeepCaption-VLA-7B): DeepCaption-VLA-7B is a fine-tuned model based on Qwen2.5-VL, designed for generating precise, structured captions and attributes for images. It follows a strict protocol to provide a main caption, a list of visual attributes, and a core class name, making it ideal for detailed and organized visual analysis.")
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(share=True, show_error=True)