Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer | |
from transformers.image_utils import load_image | |
from threading import Thread | |
import time | |
import torch | |
import spaces | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
def progress_bar_html(label: str) -> str: | |
""" | |
Returns an HTML snippet for a thin progress bar with a label. | |
The progress bar is styled as a dark animated bar. | |
""" | |
return f''' | |
<div style="display: flex; align-items: center;"> | |
<span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
<div style="width: 110px; height: 5px; background-color: #9370DB; border-radius: 2px; overflow: hidden;"> | |
<div style="width: 100%; height: 100%; background-color: #4B0082; animation: loading 1.5s linear infinite;"></div> | |
</div> | |
</div> | |
<style> | |
@keyframes loading {{ | |
0% {{ transform: translateX(-100%); }} | |
100% {{ transform: translateX(100%); }} | |
}} | |
</style> | |
''' | |
def downsample_video(video_path): | |
""" | |
Downsamples the video to 10 evenly spaced frames. | |
Each frame is converted to a PIL Image along with its timestamp. | |
""" | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
if total_frames <= 0 or fps <= 0: | |
vidcap.release() | |
return frames | |
# Sample 10 evenly spaced frames. | |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
MODEL_ID = "Qwen/Qwen2.5-VL-7B-Instruct" # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct" | |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.bfloat16 | |
).to("cuda").eval() | |
def model_inference(input_dict, history): | |
text = input_dict["text"] | |
files = input_dict["files"] | |
if text.strip().lower().startswith("@video-infer"): | |
# Remove the tag from the query. | |
text = text[len("@video-infer"):].strip() | |
if not files: | |
gr.Error("Please upload a video file along with your @video-infer query.") | |
return | |
# Assume the first file is a video. | |
video_path = files[0] | |
frames = downsample_video(video_path) | |
if not frames: | |
gr.Error("Could not process video.") | |
return | |
# Build messages: start with the text prompt. | |
messages = [ | |
{ | |
"role": "user", | |
"content": [{"type": "text", "text": text}] | |
} | |
] | |
# Append each frame with a timestamp label. | |
for image, timestamp in frames: | |
messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
messages[0]["content"].append({"type": "image", "image": image}) | |
# Collect only the images from the frames. | |
video_images = [image for image, _ in frames] | |
# Prepare the prompt. | |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor( | |
text=[prompt], | |
images=video_images, | |
return_tensors="pt", | |
padding=True, | |
).to("cuda") | |
# Set up streaming generation. | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing video with Qwen2.5VL Model") | |
for new_text in streamer: | |
buffer += new_text | |
time.sleep(0.01) | |
yield buffer | |
return | |
if len(files) > 1: | |
images = [load_image(image) for image in files] | |
elif len(files) == 1: | |
images = [load_image(files[0])] | |
else: | |
images = [] | |
if text == "" and not images: | |
gr.Error("Please input a query and optionally image(s).") | |
return | |
if text == "" and images: | |
gr.Error("Please input a text query along with the image(s).") | |
return | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text}, | |
], | |
} | |
] | |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor( | |
text=[prompt], | |
images=images if images else None, | |
return_tensors="pt", | |
padding=True, | |
).to("cuda") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing with Qwen2.5VL Model") | |
for new_text in streamer: | |
buffer += new_text | |
time.sleep(0.01) | |
yield buffer | |
examples = [ | |
[{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}], | |
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}], | |
[{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}], | |
[{"text": "@video-infer Explain the content of the video.", "files": ["example_images/sky.mp4"]}], | |
] | |
demo = gr.ChatInterface( | |
fn=model_inference, | |
description="# **Qwen2.5-VL-7B-Instruct `@video-infer for video understanding`**", | |
examples=examples, | |
fill_height=True, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
cache_examples=False, | |
) | |
demo.launch(debug=True) |