Spaces:
Running
on
Zero
Running
on
Zero
add lora support(qwen image) (#7)
Browse files- add lora support(qwen image) (7f96124104e1f290272cd10a678ce2206fcbff35)
app.py
CHANGED
|
@@ -10,6 +10,10 @@ import numpy as np
|
|
| 10 |
import time
|
| 11 |
import zipfile
|
| 12 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Description for the app
|
| 15 |
DESCRIPTION = """## Qwen Image Hpc/."""
|
|
@@ -44,6 +48,45 @@ aspect_ratios = {
|
|
| 44 |
"3:4": (1140, 1472)
|
| 45 |
}
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
# Generation function for Qwen/Qwen-Image
|
| 48 |
@spaces.GPU(duration=120)
|
| 49 |
def generate_qwen(
|
|
@@ -57,6 +100,8 @@ def generate_qwen(
|
|
| 57 |
num_inference_steps: int = 50,
|
| 58 |
num_images: int = 1,
|
| 59 |
zip_images: bool = False,
|
|
|
|
|
|
|
| 60 |
progress=gr.Progress(track_tqdm=True),
|
| 61 |
):
|
| 62 |
if randomize_seed:
|
|
@@ -64,10 +109,21 @@ def generate_qwen(
|
|
| 64 |
generator = torch.Generator(device).manual_seed(seed)
|
| 65 |
|
| 66 |
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
images = pipe_qwen(
|
| 69 |
prompt=prompt,
|
| 70 |
-
negative_prompt=negative_prompt if negative_prompt else
|
| 71 |
height=height,
|
| 72 |
width=width,
|
| 73 |
guidance_scale=guidance_scale,
|
|
@@ -88,6 +144,12 @@ def generate_qwen(
|
|
| 88 |
for i, img_path in enumerate(image_paths):
|
| 89 |
zipf.write(img_path, arcname=f"Img_{i}.png")
|
| 90 |
zip_path = zip_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
return image_paths, seed, f"{duration:.2f}", zip_path
|
| 93 |
|
|
@@ -105,6 +167,8 @@ def generate(
|
|
| 105 |
num_inference_steps: int,
|
| 106 |
num_images: int,
|
| 107 |
zip_images: bool,
|
|
|
|
|
|
|
| 108 |
progress=gr.Progress(track_tqdm=True),
|
| 109 |
):
|
| 110 |
final_negative_prompt = negative_prompt if use_negative_prompt else ""
|
|
@@ -119,6 +183,8 @@ def generate(
|
|
| 119 |
num_inference_steps=num_inference_steps,
|
| 120 |
num_images=num_images,
|
| 121 |
zip_images=zip_images,
|
|
|
|
|
|
|
| 122 |
progress=progress,
|
| 123 |
)
|
| 124 |
|
|
@@ -146,7 +212,7 @@ footer {
|
|
| 146 |
'''
|
| 147 |
|
| 148 |
# Gradio interface
|
| 149 |
-
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
| 150 |
gr.Markdown(DESCRIPTION)
|
| 151 |
with gr.Row():
|
| 152 |
prompt = gr.Text(
|
|
@@ -165,6 +231,8 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 165 |
choices=list(aspect_ratios.keys()),
|
| 166 |
value="1:1",
|
| 167 |
)
|
|
|
|
|
|
|
| 168 |
with gr.Accordion("Additional Options", open=False):
|
| 169 |
use_negative_prompt = gr.Checkbox(
|
| 170 |
label="Use negative prompt",
|
|
@@ -223,6 +291,14 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 223 |
value=1,
|
| 224 |
)
|
| 225 |
zip_images = gr.Checkbox(label="Zip generated images", value=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
gr.Markdown("### Output Information")
|
| 228 |
seed_display = gr.Textbox(label="Seed used", interactive=False)
|
|
@@ -263,6 +339,8 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 263 |
num_inference_steps,
|
| 264 |
num_images,
|
| 265 |
zip_images,
|
|
|
|
|
|
|
| 266 |
],
|
| 267 |
outputs=[result, seed_display, generation_time, zip_file],
|
| 268 |
api_name="run",
|
|
@@ -278,4 +356,4 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 278 |
)
|
| 279 |
|
| 280 |
if __name__ == "__main__":
|
| 281 |
-
demo.queue(max_size=50).launch(share=False, mcp_server=True, ssr_mode=False, show_error=True)
|
|
|
|
| 10 |
import time
|
| 11 |
import zipfile
|
| 12 |
import os
|
| 13 |
+
import requests
|
| 14 |
+
from urllib.parse import urlparse
|
| 15 |
+
import tempfile
|
| 16 |
+
import shutil
|
| 17 |
|
| 18 |
# Description for the app
|
| 19 |
DESCRIPTION = """## Qwen Image Hpc/."""
|
|
|
|
| 48 |
"3:4": (1140, 1472)
|
| 49 |
}
|
| 50 |
|
| 51 |
+
def load_lora_opt(pipe, lora_input):
|
| 52 |
+
lora_input = lora_input.strip()
|
| 53 |
+
if not lora_input:
|
| 54 |
+
return
|
| 55 |
+
|
| 56 |
+
# If it's just an ID like "author/model"
|
| 57 |
+
if "/" in lora_input and not lora_input.startswith("http"):
|
| 58 |
+
pipe.load_lora_weights(lora_input, adapter_name="default")
|
| 59 |
+
return
|
| 60 |
+
|
| 61 |
+
if lora_input.startswith("http"):
|
| 62 |
+
url = lora_input
|
| 63 |
+
|
| 64 |
+
# Repo page (no blob/resolve)
|
| 65 |
+
if "huggingface.co" in url and "/blob/" not in url and "/resolve/" not in url:
|
| 66 |
+
repo_id = urlparse(url).path.strip("/")
|
| 67 |
+
pipe.load_lora_weights(repo_id, adapter_name="default")
|
| 68 |
+
return
|
| 69 |
+
|
| 70 |
+
# Blob link → convert to resolve link
|
| 71 |
+
if "/blob/" in url:
|
| 72 |
+
url = url.replace("/blob/", "/resolve/")
|
| 73 |
+
|
| 74 |
+
# Download direct file
|
| 75 |
+
tmp_dir = tempfile.mkdtemp()
|
| 76 |
+
local_path = os.path.join(tmp_dir, os.path.basename(urlparse(url).path))
|
| 77 |
+
|
| 78 |
+
try:
|
| 79 |
+
print(f"Downloading LoRA from {url}...")
|
| 80 |
+
resp = requests.get(url, stream=True)
|
| 81 |
+
resp.raise_for_status()
|
| 82 |
+
with open(local_path, "wb") as f:
|
| 83 |
+
for chunk in resp.iter_content(chunk_size=8192):
|
| 84 |
+
f.write(chunk)
|
| 85 |
+
print(f"Saved LoRA to {local_path}")
|
| 86 |
+
pipe.load_lora_weights(local_path, adapter_name="default")
|
| 87 |
+
finally:
|
| 88 |
+
shutil.rmtree(tmp_dir, ignore_errors=True)
|
| 89 |
+
|
| 90 |
# Generation function for Qwen/Qwen-Image
|
| 91 |
@spaces.GPU(duration=120)
|
| 92 |
def generate_qwen(
|
|
|
|
| 100 |
num_inference_steps: int = 50,
|
| 101 |
num_images: int = 1,
|
| 102 |
zip_images: bool = False,
|
| 103 |
+
lora_input: str = "",
|
| 104 |
+
lora_scale: float = 1.0,
|
| 105 |
progress=gr.Progress(track_tqdm=True),
|
| 106 |
):
|
| 107 |
if randomize_seed:
|
|
|
|
| 109 |
generator = torch.Generator(device).manual_seed(seed)
|
| 110 |
|
| 111 |
start_time = time.time()
|
| 112 |
+
|
| 113 |
+
current_adapters = pipe_qwen.get_list_adapters()
|
| 114 |
+
for adapter in current_adapters:
|
| 115 |
+
pipe_qwen.delete_adapters(adapter)
|
| 116 |
+
pipe_qwen.disable_lora()
|
| 117 |
+
|
| 118 |
+
use_lora = False
|
| 119 |
+
if lora_input and lora_input.strip() != "":
|
| 120 |
+
load_lora_opt(pipe_qwen, lora_input)
|
| 121 |
+
pipe_qwen.set_adapters(["default"], adapter_weights=[lora_scale])
|
| 122 |
+
use_lora = True
|
| 123 |
|
| 124 |
images = pipe_qwen(
|
| 125 |
prompt=prompt,
|
| 126 |
+
negative_prompt=negative_prompt if negative_prompt else "",
|
| 127 |
height=height,
|
| 128 |
width=width,
|
| 129 |
guidance_scale=guidance_scale,
|
|
|
|
| 144 |
for i, img_path in enumerate(image_paths):
|
| 145 |
zipf.write(img_path, arcname=f"Img_{i}.png")
|
| 146 |
zip_path = zip_name
|
| 147 |
+
|
| 148 |
+
# Clean up adapters
|
| 149 |
+
current_adapters = pipe_qwen.get_list_adapters()
|
| 150 |
+
for adapter in current_adapters:
|
| 151 |
+
pipe_qwen.delete_adapters(adapter)
|
| 152 |
+
pipe_qwen.disable_lora()
|
| 153 |
|
| 154 |
return image_paths, seed, f"{duration:.2f}", zip_path
|
| 155 |
|
|
|
|
| 167 |
num_inference_steps: int,
|
| 168 |
num_images: int,
|
| 169 |
zip_images: bool,
|
| 170 |
+
lora_input: str,
|
| 171 |
+
lora_scale: float,
|
| 172 |
progress=gr.Progress(track_tqdm=True),
|
| 173 |
):
|
| 174 |
final_negative_prompt = negative_prompt if use_negative_prompt else ""
|
|
|
|
| 183 |
num_inference_steps=num_inference_steps,
|
| 184 |
num_images=num_images,
|
| 185 |
zip_images=zip_images,
|
| 186 |
+
lora_input=lora_input,
|
| 187 |
+
lora_scale=lora_scale,
|
| 188 |
progress=progress,
|
| 189 |
)
|
| 190 |
|
|
|
|
| 212 |
'''
|
| 213 |
|
| 214 |
# Gradio interface
|
| 215 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme", delete_cache=(240, 240)) as demo:
|
| 216 |
gr.Markdown(DESCRIPTION)
|
| 217 |
with gr.Row():
|
| 218 |
prompt = gr.Text(
|
|
|
|
| 231 |
choices=list(aspect_ratios.keys()),
|
| 232 |
value="1:1",
|
| 233 |
)
|
| 234 |
+
with gr.Row():
|
| 235 |
+
lora = gr.Textbox(label="qwen image lora (optional)", placeholder="flymy-ai/qwen-image-anime-irl-lora")
|
| 236 |
with gr.Accordion("Additional Options", open=False):
|
| 237 |
use_negative_prompt = gr.Checkbox(
|
| 238 |
label="Use negative prompt",
|
|
|
|
| 291 |
value=1,
|
| 292 |
)
|
| 293 |
zip_images = gr.Checkbox(label="Zip generated images", value=False)
|
| 294 |
+
with gr.Row():
|
| 295 |
+
lora_scale = gr.Slider(
|
| 296 |
+
label="LoRA Scale",
|
| 297 |
+
minimum=0,
|
| 298 |
+
maximum=2,
|
| 299 |
+
step=0.01,
|
| 300 |
+
value=1,
|
| 301 |
+
)
|
| 302 |
|
| 303 |
gr.Markdown("### Output Information")
|
| 304 |
seed_display = gr.Textbox(label="Seed used", interactive=False)
|
|
|
|
| 339 |
num_inference_steps,
|
| 340 |
num_images,
|
| 341 |
zip_images,
|
| 342 |
+
lora,
|
| 343 |
+
lora_scale,
|
| 344 |
],
|
| 345 |
outputs=[result, seed_display, generation_time, zip_file],
|
| 346 |
api_name="run",
|
|
|
|
| 356 |
)
|
| 357 |
|
| 358 |
if __name__ == "__main__":
|
| 359 |
+
demo.queue(max_size=50).launch(share=False, mcp_server=True, ssr_mode=False, debug=True, show_error=True)
|