Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,48 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
from threading import Thread
|
4 |
import gradio as gr
|
|
|
5 |
import torch
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
7 |
-
from transformers.image_utils import load_image
|
8 |
import edge_tts
|
9 |
import asyncio
|
10 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
TTS_VOICES = [
|
23 |
"en-US-JennyNeural", # @tts1
|
@@ -30,7 +55,14 @@ TTS_VOICES = [
|
|
30 |
"en-US-TonyNeural", # @tts8
|
31 |
]
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
35 |
"""Convert text to speech using Edge TTS and save as MP3"""
|
36 |
communicate = edge_tts.Communicate(text, voice)
|
@@ -39,25 +71,27 @@ async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
|
39 |
|
40 |
@spaces.GPU
|
41 |
def generate(
|
42 |
-
input_dict,
|
43 |
-
|
44 |
-
max_new_tokens: int = 1024,
|
45 |
-
temperature: float = 0.6,
|
46 |
-
top_p: float = 0.9,
|
47 |
-
top_k: int = 50,
|
48 |
-
repetition_penalty: float = 1.2
|
49 |
):
|
50 |
-
"""Generates chatbot response and handles TTS requests with multimodal support"""
|
51 |
-
text = input_dict
|
52 |
files = input_dict.get("files", [])
|
53 |
-
|
54 |
-
#
|
55 |
-
if files:
|
56 |
images = [load_image(image) for image in files]
|
|
|
|
|
57 |
else:
|
58 |
images = []
|
59 |
-
|
60 |
-
# Check if
|
61 |
tts_prefix = "@tts"
|
62 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 9))
|
63 |
voice_index = next((i for i in range(1, 9) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
@@ -69,29 +103,36 @@ def generate(
|
|
69 |
voice = None
|
70 |
text = text.replace(tts_prefix, "").strip()
|
71 |
|
72 |
-
|
|
|
73 |
if images:
|
74 |
-
#
|
75 |
messages = [
|
76 |
-
{
|
77 |
-
"
|
78 |
-
"
|
79 |
-
|
80 |
-
{"type": "text", "text": text},
|
81 |
-
],
|
82 |
-
}
|
83 |
]
|
84 |
-
prompt =
|
85 |
-
inputs =
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
else:
|
93 |
-
#
|
94 |
-
conversation = [*history, {"role": "user", "content": text}]
|
95 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
96 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
97 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
@@ -110,38 +151,32 @@ def generate(
|
|
110 |
num_beams=1,
|
111 |
repetition_penalty=repetition_penalty,
|
112 |
)
|
113 |
-
|
114 |
-
# Start generation in a separate thread
|
115 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
116 |
t.start()
|
117 |
|
118 |
-
# Collect generated text
|
119 |
outputs = []
|
120 |
for text in streamer:
|
121 |
outputs.append(text)
|
122 |
yield "".join(outputs)
|
|
|
123 |
final_response = "".join(outputs)
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
yield final_response # Return text response
|
131 |
|
132 |
-
|
133 |
-
demo = gr.
|
134 |
fn=generate,
|
135 |
-
|
136 |
-
gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), # Multimodal input
|
137 |
-
gr.Textbox(label="Chat History", value="", placeholder="Previous conversation history"),
|
138 |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
139 |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
140 |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
141 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
142 |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
143 |
],
|
144 |
-
outputs=["text", "audio"],
|
145 |
examples=[
|
146 |
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
147 |
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
|
@@ -150,11 +185,15 @@ demo = gr.Interface(
|
|
150 |
["Rewrite the following sentence in passive voice: 'The dog chased the cat.'"],
|
151 |
["@tts5 What is the capital of France?"],
|
152 |
],
|
153 |
-
|
154 |
-
|
|
|
155 |
css=css,
|
156 |
fill_height=True,
|
|
|
|
|
|
|
157 |
)
|
158 |
|
159 |
if __name__ == "__main__":
|
160 |
-
demo.launch()
|
|
|
1 |
import os
|
2 |
+
from collections.abc import Iterator
|
3 |
from threading import Thread
|
4 |
import gradio as gr
|
5 |
+
import spaces
|
6 |
import torch
|
|
|
|
|
7 |
import edge_tts
|
8 |
import asyncio
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
10 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
11 |
+
from transformers.image_utils import load_image
|
12 |
+
import time
|
13 |
+
|
14 |
+
DESCRIPTION = """
|
15 |
+
# QwQ Edge 💬
|
16 |
+
"""
|
17 |
|
18 |
+
css = '''
|
19 |
+
h1 {
|
20 |
+
text-align: center;
|
21 |
+
display: block;
|
22 |
+
}
|
23 |
|
24 |
+
#duplicate-button {
|
25 |
+
margin: auto;
|
26 |
+
color: #fff;
|
27 |
+
background: #1565c0;
|
28 |
+
border-radius: 100vh;
|
29 |
+
}
|
30 |
+
'''
|
31 |
+
|
32 |
+
MAX_MAX_NEW_TOKENS = 2048
|
33 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
34 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
35 |
+
|
36 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
37 |
+
|
38 |
+
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
41 |
+
model_id,
|
42 |
+
device_map="auto",
|
43 |
+
torch_dtype=torch.bfloat16,
|
44 |
+
)
|
45 |
+
model.eval()
|
46 |
|
47 |
TTS_VOICES = [
|
48 |
"en-US-JennyNeural", # @tts1
|
|
|
55 |
"en-US-TonyNeural", # @tts8
|
56 |
]
|
57 |
|
58 |
+
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
59 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
60 |
+
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
61 |
+
MODEL_ID,
|
62 |
+
trust_remote_code=True,
|
63 |
+
torch_dtype=torch.float16
|
64 |
+
).to("auto").eval()
|
65 |
+
|
66 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
67 |
"""Convert text to speech using Edge TTS and save as MP3"""
|
68 |
communicate = edge_tts.Communicate(text, voice)
|
|
|
71 |
|
72 |
@spaces.GPU
|
73 |
def generate(
|
74 |
+
input_dict: dict,
|
75 |
+
chat_history: list[dict],
|
76 |
+
max_new_tokens: int = 1024,
|
77 |
+
temperature: float = 0.6,
|
78 |
+
top_p: float = 0.9,
|
79 |
+
top_k: int = 50,
|
80 |
+
repetition_penalty: float = 1.2,
|
81 |
):
|
82 |
+
"""Generates chatbot response and handles TTS requests with multimodal input support"""
|
83 |
+
text = input_dict["text"]
|
84 |
files = input_dict.get("files", [])
|
85 |
+
|
86 |
+
# Check if input includes image(s)
|
87 |
+
if len(files) > 1:
|
88 |
images = [load_image(image) for image in files]
|
89 |
+
elif len(files) == 1:
|
90 |
+
images = [load_image(files[0])]
|
91 |
else:
|
92 |
images = []
|
93 |
+
|
94 |
+
# Check if message is for TTS
|
95 |
tts_prefix = "@tts"
|
96 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 9))
|
97 |
voice_index = next((i for i in range(1, 9) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
|
103 |
voice = None
|
104 |
text = text.replace(tts_prefix, "").strip()
|
105 |
|
106 |
+
conversation = [*chat_history, {"role": "user", "content": text}]
|
107 |
+
|
108 |
if images:
|
109 |
+
# Process multimodal input
|
110 |
messages = [
|
111 |
+
{"role": "user", "content": [
|
112 |
+
*[{"type": "image", "image": image} for image in images],
|
113 |
+
{"type": "text", "text": text},
|
114 |
+
]}
|
|
|
|
|
|
|
115 |
]
|
116 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
117 |
+
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
|
118 |
+
|
119 |
+
# Handle generation for multimodal input
|
120 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
121 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
122 |
+
|
123 |
+
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
124 |
+
thread.start()
|
125 |
+
|
126 |
+
buffer = ""
|
127 |
+
yield "Thinking..."
|
128 |
+
for new_text in streamer:
|
129 |
+
buffer += new_text
|
130 |
+
buffer = buffer.replace("<|im_end|>", "")
|
131 |
+
time.sleep(0.01)
|
132 |
+
yield buffer
|
133 |
|
134 |
else:
|
135 |
+
# Process text-only input
|
|
|
136 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
137 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
138 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
151 |
num_beams=1,
|
152 |
repetition_penalty=repetition_penalty,
|
153 |
)
|
|
|
|
|
154 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
155 |
t.start()
|
156 |
|
|
|
157 |
outputs = []
|
158 |
for text in streamer:
|
159 |
outputs.append(text)
|
160 |
yield "".join(outputs)
|
161 |
+
|
162 |
final_response = "".join(outputs)
|
163 |
|
164 |
+
if is_tts and voice:
|
165 |
+
output_file = asyncio.run(text_to_speech(final_response, voice))
|
166 |
+
yield gr.Audio(output_file, autoplay=True) # Return playable audio
|
167 |
+
else:
|
168 |
+
yield final_response # Return text response
|
|
|
169 |
|
170 |
+
|
171 |
+
demo = gr.ChatInterface(
|
172 |
fn=generate,
|
173 |
+
additional_inputs=[
|
|
|
|
|
174 |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
175 |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
176 |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
177 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
178 |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
179 |
],
|
|
|
180 |
examples=[
|
181 |
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
182 |
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
|
|
|
185 |
["Rewrite the following sentence in passive voice: 'The dog chased the cat.'"],
|
186 |
["@tts5 What is the capital of France?"],
|
187 |
],
|
188 |
+
cache_examples=False,
|
189 |
+
type="messages",
|
190 |
+
description=DESCRIPTION,
|
191 |
css=css,
|
192 |
fill_height=True,
|
193 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
194 |
+
stop_btn="Stop Generation",
|
195 |
+
multimodal=True,
|
196 |
)
|
197 |
|
198 |
if __name__ == "__main__":
|
199 |
+
demo.queue(max_size=20).launch()
|