Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import uuid
|
|
4 |
import json
|
5 |
import time
|
6 |
import asyncio
|
|
|
7 |
from threading import Thread
|
8 |
|
9 |
import gradio as gr
|
@@ -12,6 +13,7 @@ import torch
|
|
12 |
import numpy as np
|
13 |
from PIL import Image
|
14 |
import edge_tts
|
|
|
15 |
|
16 |
from transformers import (
|
17 |
AutoModelForCausalLM,
|
@@ -21,14 +23,75 @@ from transformers import (
|
|
21 |
AutoProcessor,
|
22 |
)
|
23 |
from transformers.image_utils import load_image
|
24 |
-
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
25 |
|
26 |
-
|
27 |
-
import tempfile
|
28 |
-
import trimesh
|
29 |
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
|
30 |
from diffusers.utils import export_to_ply
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
DESCRIPTION = """
|
33 |
# QwQ Edge 💬
|
34 |
"""
|
@@ -50,13 +113,14 @@ h1 {
|
|
50 |
MAX_MAX_NEW_TOKENS = 2048
|
51 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
52 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
53 |
-
MAX_SEED = np.iinfo(np.int32).max
|
54 |
|
55 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
56 |
|
57 |
-
#
|
58 |
-
#
|
59 |
-
#
|
|
|
|
|
60 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
61 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
62 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -66,11 +130,13 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
66 |
)
|
67 |
model.eval()
|
68 |
|
|
|
69 |
TTS_VOICES = [
|
70 |
"en-US-JennyNeural", # @tts1
|
71 |
"en-US-GuyNeural", # @tts2
|
72 |
]
|
73 |
|
|
|
74 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
75 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
76 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
@@ -79,12 +145,20 @@ model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
79 |
torch_dtype=torch.float16
|
80 |
).to("cuda").eval()
|
81 |
|
|
|
|
|
|
|
|
|
82 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
83 |
"""Convert text to speech using Edge TTS and save as MP3"""
|
84 |
communicate = edge_tts.Communicate(text, voice)
|
85 |
await communicate.save(output_file)
|
86 |
return output_file
|
87 |
|
|
|
|
|
|
|
|
|
88 |
def clean_chat_history(chat_history):
|
89 |
"""
|
90 |
Filter out any chat entries whose "content" is not a string.
|
@@ -96,9 +170,10 @@ def clean_chat_history(chat_history):
|
|
96 |
cleaned.append(msg)
|
97 |
return cleaned
|
98 |
|
99 |
-
#
|
100 |
-
# Stable Diffusion XL
|
101 |
-
#
|
|
|
102 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
103 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
104 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
@@ -128,11 +203,6 @@ def save_image(img: Image.Image) -> str:
|
|
128 |
img.save(unique_name)
|
129 |
return unique_name
|
130 |
|
131 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
132 |
-
if randomize_seed:
|
133 |
-
seed = random.randint(0, MAX_SEED)
|
134 |
-
return seed
|
135 |
-
|
136 |
@spaces.GPU(duration=60, enable_queue=True)
|
137 |
def generate_image_fn(
|
138 |
prompt: str,
|
@@ -166,6 +236,7 @@ def generate_image_fn(
|
|
166 |
options["use_resolution_binning"] = True
|
167 |
|
168 |
images = []
|
|
|
169 |
for i in range(0, num_images, BATCH_SIZE):
|
170 |
batch_options = options.copy()
|
171 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
@@ -180,82 +251,30 @@ def generate_image_fn(
|
|
180 |
image_paths = [save_image(img) for img in images]
|
181 |
return image_paths, seed
|
182 |
|
183 |
-
#
|
184 |
-
# 3D
|
185 |
-
#
|
186 |
-
class Model3D:
|
187 |
-
def __init__(self):
|
188 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
189 |
-
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
190 |
-
self.pipe.to(self.device)
|
191 |
-
# Ensure the text encoder is in half precision
|
192 |
-
self.pipe.text_encoder = self.pipe.text_encoder.half()
|
193 |
-
|
194 |
-
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
195 |
-
self.pipe_img.to(self.device)
|
196 |
-
# Ensure the text encoder is in half precision
|
197 |
-
self.pipe_img.text_encoder = self.pipe_img.text_encoder.half()
|
198 |
-
|
199 |
-
def to_glb(self, ply_path: str) -> str:
|
200 |
-
mesh = trimesh.load(ply_path)
|
201 |
-
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
|
202 |
-
mesh.apply_transform(rot)
|
203 |
-
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
204 |
-
mesh.apply_transform(rot)
|
205 |
-
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
|
206 |
-
mesh.export(mesh_path.name, file_type="glb")
|
207 |
-
return mesh_path.name
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
num_inference_steps=num_steps,
|
226 |
-
output_type="mesh",
|
227 |
-
)
|
228 |
-
images = output.images
|
229 |
-
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
230 |
-
export_to_ply(images[0], ply_path.name)
|
231 |
-
return self.to_glb(ply_path.name)
|
232 |
-
|
233 |
-
def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str:
|
234 |
-
generator = torch.Generator(device=self.device).manual_seed(seed)
|
235 |
-
if self.device.type == "cuda":
|
236 |
-
with torch.autocast("cuda", dtype=torch.float16):
|
237 |
-
output = self.pipe_img(
|
238 |
-
image,
|
239 |
-
generator=generator,
|
240 |
-
guidance_scale=guidance_scale,
|
241 |
-
num_inference_steps=num_steps,
|
242 |
-
output_type="mesh",
|
243 |
-
)
|
244 |
-
else:
|
245 |
-
output = self.pipe_img(
|
246 |
-
image,
|
247 |
-
generator=generator,
|
248 |
-
guidance_scale=guidance_scale,
|
249 |
-
num_inference_steps=num_steps,
|
250 |
-
output_type="mesh",
|
251 |
-
)
|
252 |
-
images = output.images
|
253 |
-
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
254 |
-
export_to_ply(images[0], ply_path.name)
|
255 |
-
return self.to_glb(ply_path.name)
|
256 |
|
257 |
-
#
|
258 |
-
|
|
|
259 |
|
260 |
@spaces.GPU
|
261 |
def generate(
|
@@ -269,7 +288,7 @@ def generate(
|
|
269 |
):
|
270 |
"""
|
271 |
Generates chatbot responses with support for multimodal input, TTS, image generation,
|
272 |
-
and 3D
|
273 |
|
274 |
Special commands:
|
275 |
- "@tts1" or "@tts2": triggers text-to-speech.
|
@@ -279,24 +298,21 @@ def generate(
|
|
279 |
text = input_dict["text"]
|
280 |
files = input_dict.get("files", [])
|
281 |
|
282 |
-
#
|
283 |
-
# 3D Model Generation Command
|
284 |
-
# ------------------------------
|
285 |
if text.strip().lower().startswith("@3d"):
|
286 |
-
|
287 |
yield "Generating 3D model..."
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
295 |
return
|
296 |
|
297 |
-
#
|
298 |
-
# Image Generation Command
|
299 |
-
# ------------------------------
|
300 |
if text.strip().lower().startswith("@image"):
|
301 |
prompt = text[len("@image"):].strip()
|
302 |
yield "Generating image..."
|
@@ -316,9 +332,7 @@ def generate(
|
|
316 |
yield gr.Image(image_paths[0])
|
317 |
return
|
318 |
|
319 |
-
#
|
320 |
-
# TTS / Regular Text Generation
|
321 |
-
# ------------------------------
|
322 |
tts_prefix = "@tts"
|
323 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
324 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
@@ -394,6 +408,10 @@ def generate(
|
|
394 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
395 |
yield gr.Audio(output_file, autoplay=True)
|
396 |
|
|
|
|
|
|
|
|
|
397 |
demo = gr.ChatInterface(
|
398 |
fn=generate,
|
399 |
additional_inputs=[
|
@@ -408,9 +426,9 @@ demo = gr.ChatInterface(
|
|
408 |
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
|
409 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
410 |
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
|
|
|
411 |
["Write a Python function to check if a number is prime."],
|
412 |
["@tts2 What causes rainbows to form?"],
|
413 |
-
["@3d A futuristic spaceship in low-poly style"],
|
414 |
],
|
415 |
cache_examples=False,
|
416 |
type="messages",
|
@@ -423,4 +441,5 @@ demo = gr.ChatInterface(
|
|
423 |
)
|
424 |
|
425 |
if __name__ == "__main__":
|
|
|
426 |
demo.queue(max_size=20).launch(share=True)
|
|
|
4 |
import json
|
5 |
import time
|
6 |
import asyncio
|
7 |
+
import tempfile
|
8 |
from threading import Thread
|
9 |
|
10 |
import gradio as gr
|
|
|
13 |
import numpy as np
|
14 |
from PIL import Image
|
15 |
import edge_tts
|
16 |
+
import trimesh
|
17 |
|
18 |
from transformers import (
|
19 |
AutoModelForCausalLM,
|
|
|
23 |
AutoProcessor,
|
24 |
)
|
25 |
from transformers.image_utils import load_image
|
|
|
26 |
|
27 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
|
|
|
|
28 |
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
|
29 |
from diffusers.utils import export_to_ply
|
30 |
|
31 |
+
# -----------------------------------------------------------------------------
|
32 |
+
# Global constants and helper functions
|
33 |
+
# -----------------------------------------------------------------------------
|
34 |
+
|
35 |
+
MAX_SEED = np.iinfo(np.int32).max
|
36 |
+
|
37 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
38 |
+
if randomize_seed:
|
39 |
+
seed = random.randint(0, MAX_SEED)
|
40 |
+
return seed
|
41 |
+
|
42 |
+
# -----------------------------------------------------------------------------
|
43 |
+
# Model class for Text-to-3D Generation (ShapE)
|
44 |
+
# -----------------------------------------------------------------------------
|
45 |
+
|
46 |
+
class Model:
|
47 |
+
def __init__(self):
|
48 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
49 |
+
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
50 |
+
self.pipe.to(self.device)
|
51 |
+
|
52 |
+
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
53 |
+
self.pipe_img.to(self.device)
|
54 |
+
|
55 |
+
def to_glb(self, ply_path: str) -> str:
|
56 |
+
mesh = trimesh.load(ply_path)
|
57 |
+
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
|
58 |
+
mesh.apply_transform(rot)
|
59 |
+
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
60 |
+
mesh.apply_transform(rot)
|
61 |
+
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
|
62 |
+
mesh.export(mesh_path.name, file_type="glb")
|
63 |
+
return mesh_path.name
|
64 |
+
|
65 |
+
def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str:
|
66 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
67 |
+
images = self.pipe(
|
68 |
+
prompt,
|
69 |
+
generator=generator,
|
70 |
+
guidance_scale=guidance_scale,
|
71 |
+
num_inference_steps=num_steps,
|
72 |
+
output_type="mesh",
|
73 |
+
).images
|
74 |
+
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
75 |
+
export_to_ply(images[0], ply_path.name)
|
76 |
+
return self.to_glb(ply_path.name)
|
77 |
+
|
78 |
+
def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str:
|
79 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
80 |
+
images = self.pipe_img(
|
81 |
+
image,
|
82 |
+
generator=generator,
|
83 |
+
guidance_scale=guidance_scale,
|
84 |
+
num_inference_steps=num_steps,
|
85 |
+
output_type="mesh",
|
86 |
+
).images
|
87 |
+
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
88 |
+
export_to_ply(images[0], ply_path.name)
|
89 |
+
return self.to_glb(ply_path.name)
|
90 |
+
|
91 |
+
# -----------------------------------------------------------------------------
|
92 |
+
# Gradio UI configuration
|
93 |
+
# -----------------------------------------------------------------------------
|
94 |
+
|
95 |
DESCRIPTION = """
|
96 |
# QwQ Edge 💬
|
97 |
"""
|
|
|
113 |
MAX_MAX_NEW_TOKENS = 2048
|
114 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
115 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
|
116 |
|
117 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
118 |
|
119 |
+
# -----------------------------------------------------------------------------
|
120 |
+
# Load Models and Pipelines for Chat, Image, and Multimodal Processing
|
121 |
+
# -----------------------------------------------------------------------------
|
122 |
+
|
123 |
+
# Load the text-only model and tokenizer (for pure text chat)
|
124 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
125 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
126 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
130 |
)
|
131 |
model.eval()
|
132 |
|
133 |
+
# Voices for text-to-speech
|
134 |
TTS_VOICES = [
|
135 |
"en-US-JennyNeural", # @tts1
|
136 |
"en-US-GuyNeural", # @tts2
|
137 |
]
|
138 |
|
139 |
+
# Load multimodal processor and model (e.g. for OCR and image processing)
|
140 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
141 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
142 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
145 |
torch_dtype=torch.float16
|
146 |
).to("cuda").eval()
|
147 |
|
148 |
+
# -----------------------------------------------------------------------------
|
149 |
+
# Asynchronous text-to-speech
|
150 |
+
# -----------------------------------------------------------------------------
|
151 |
+
|
152 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
153 |
"""Convert text to speech using Edge TTS and save as MP3"""
|
154 |
communicate = edge_tts.Communicate(text, voice)
|
155 |
await communicate.save(output_file)
|
156 |
return output_file
|
157 |
|
158 |
+
# -----------------------------------------------------------------------------
|
159 |
+
# Utility function to clean conversation history
|
160 |
+
# -----------------------------------------------------------------------------
|
161 |
+
|
162 |
def clean_chat_history(chat_history):
|
163 |
"""
|
164 |
Filter out any chat entries whose "content" is not a string.
|
|
|
170 |
cleaned.append(msg)
|
171 |
return cleaned
|
172 |
|
173 |
+
# -----------------------------------------------------------------------------
|
174 |
+
# Stable Diffusion XL Pipeline for Image Generation
|
175 |
+
# -----------------------------------------------------------------------------
|
176 |
+
|
177 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
178 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
179 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
|
|
203 |
img.save(unique_name)
|
204 |
return unique_name
|
205 |
|
|
|
|
|
|
|
|
|
|
|
206 |
@spaces.GPU(duration=60, enable_queue=True)
|
207 |
def generate_image_fn(
|
208 |
prompt: str,
|
|
|
236 |
options["use_resolution_binning"] = True
|
237 |
|
238 |
images = []
|
239 |
+
# Process in batches
|
240 |
for i in range(0, num_images, BATCH_SIZE):
|
241 |
batch_options = options.copy()
|
242 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
|
|
251 |
image_paths = [save_image(img) for img in images]
|
252 |
return image_paths, seed
|
253 |
|
254 |
+
# -----------------------------------------------------------------------------
|
255 |
+
# Text-to-3D Generation using the ShapE Pipeline
|
256 |
+
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
+
@spaces.GPU(duration=120, enable_queue=True)
|
259 |
+
def generate_3d_fn(
|
260 |
+
prompt: str,
|
261 |
+
seed: int = 1,
|
262 |
+
guidance_scale: float = 15.0,
|
263 |
+
num_steps: int = 64,
|
264 |
+
randomize_seed: bool = False,
|
265 |
+
):
|
266 |
+
"""
|
267 |
+
Generate a 3D model from text using the ShapE pipeline.
|
268 |
+
Returns a tuple of (glb_file_path, used_seed).
|
269 |
+
"""
|
270 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
271 |
+
model3d = Model()
|
272 |
+
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
273 |
+
return glb_path, seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
+
# -----------------------------------------------------------------------------
|
276 |
+
# Chat Generation Function with support for @tts, @image, and @3d commands
|
277 |
+
# -----------------------------------------------------------------------------
|
278 |
|
279 |
@spaces.GPU
|
280 |
def generate(
|
|
|
288 |
):
|
289 |
"""
|
290 |
Generates chatbot responses with support for multimodal input, TTS, image generation,
|
291 |
+
and now 3D generation.
|
292 |
|
293 |
Special commands:
|
294 |
- "@tts1" or "@tts2": triggers text-to-speech.
|
|
|
298 |
text = input_dict["text"]
|
299 |
files = input_dict.get("files", [])
|
300 |
|
301 |
+
# --- 3D Generation branch ---
|
|
|
|
|
302 |
if text.strip().lower().startswith("@3d"):
|
303 |
+
prompt = text[len("@3d"):].strip()
|
304 |
yield "Generating 3D model..."
|
305 |
+
glb_path, used_seed = generate_3d_fn(
|
306 |
+
prompt=prompt,
|
307 |
+
seed=1,
|
308 |
+
guidance_scale=15.0,
|
309 |
+
num_steps=64,
|
310 |
+
randomize_seed=True,
|
311 |
+
)
|
312 |
+
yield gr.File(glb_path, label="3D Model (GLB)")
|
313 |
return
|
314 |
|
315 |
+
# --- Image Generation branch ---
|
|
|
|
|
316 |
if text.strip().lower().startswith("@image"):
|
317 |
prompt = text[len("@image"):].strip()
|
318 |
yield "Generating image..."
|
|
|
332 |
yield gr.Image(image_paths[0])
|
333 |
return
|
334 |
|
335 |
+
# --- Text and TTS branch ---
|
|
|
|
|
336 |
tts_prefix = "@tts"
|
337 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
338 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
|
408 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
409 |
yield gr.Audio(output_file, autoplay=True)
|
410 |
|
411 |
+
# -----------------------------------------------------------------------------
|
412 |
+
# Gradio Chat Interface Setup and Launch
|
413 |
+
# -----------------------------------------------------------------------------
|
414 |
+
|
415 |
demo = gr.ChatInterface(
|
416 |
fn=generate,
|
417 |
additional_inputs=[
|
|
|
426 |
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
|
427 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
428 |
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
|
429 |
+
["@3d A futuristic city skyline in the style of cyberpunk"],
|
430 |
["Write a Python function to check if a number is prime."],
|
431 |
["@tts2 What causes rainbows to form?"],
|
|
|
432 |
],
|
433 |
cache_examples=False,
|
434 |
type="messages",
|
|
|
441 |
)
|
442 |
|
443 |
if __name__ == "__main__":
|
444 |
+
# To create a public link, set share=True in launch().
|
445 |
demo.queue(max_size=20).launch(share=True)
|