Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,9 +4,7 @@ import uuid
|
|
4 |
import json
|
5 |
import time
|
6 |
import asyncio
|
7 |
-
import tempfile
|
8 |
from threading import Thread
|
9 |
-
import base64
|
10 |
|
11 |
import gradio as gr
|
12 |
import spaces
|
@@ -14,7 +12,6 @@ import torch
|
|
14 |
import numpy as np
|
15 |
from PIL import Image
|
16 |
import edge_tts
|
17 |
-
import trimesh
|
18 |
|
19 |
from transformers import (
|
20 |
AutoModelForCausalLM,
|
@@ -24,85 +21,8 @@ from transformers import (
|
|
24 |
AutoProcessor,
|
25 |
)
|
26 |
from transformers.image_utils import load_image
|
27 |
-
|
28 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
29 |
-
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
|
30 |
-
from diffusers.utils import export_to_ply
|
31 |
-
|
32 |
-
|
33 |
-
MAX_SEED = np.iinfo(np.int32).max
|
34 |
-
|
35 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
return seed
|
39 |
|
40 |
-
def glb_to_data_url(glb_path: str) -> str:
|
41 |
-
"""
|
42 |
-
Reads a GLB file from disk and returns a data URL with a base64 encoded representation.
|
43 |
-
This data URL can be used as the `src` for an HTML <model-viewer> tag.
|
44 |
-
"""
|
45 |
-
with open(glb_path, "rb") as f:
|
46 |
-
data = f.read()
|
47 |
-
b64_data = base64.b64encode(data).decode("utf-8")
|
48 |
-
return f"data:model/gltf-binary;base64,{b64_data}"
|
49 |
-
|
50 |
-
class Model:
|
51 |
-
def __init__(self):
|
52 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
53 |
-
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
54 |
-
self.pipe.to(self.device)
|
55 |
-
# Ensure the text encoder is in half precision to avoid dtype mismatches.
|
56 |
-
if torch.cuda.is_available():
|
57 |
-
try:
|
58 |
-
self.pipe.text_encoder = self.pipe.text_encoder.half()
|
59 |
-
except AttributeError:
|
60 |
-
pass
|
61 |
-
|
62 |
-
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
63 |
-
self.pipe_img.to(self.device)
|
64 |
-
# Use getattr with a default value to avoid AttributeError if text_encoder is missing.
|
65 |
-
if torch.cuda.is_available():
|
66 |
-
text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
|
67 |
-
if text_encoder_img is not None:
|
68 |
-
self.pipe_img.text_encoder = text_encoder_img.half()
|
69 |
-
|
70 |
-
def to_glb(self, ply_path: str) -> str:
|
71 |
-
mesh = trimesh.load(ply_path)
|
72 |
-
# Rotate the mesh for proper orientation
|
73 |
-
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
|
74 |
-
mesh.apply_transform(rot)
|
75 |
-
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
76 |
-
mesh.apply_transform(rot)
|
77 |
-
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
|
78 |
-
mesh.export(mesh_path.name, file_type="glb")
|
79 |
-
return mesh_path.name
|
80 |
-
|
81 |
-
def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str:
|
82 |
-
generator = torch.Generator(device=self.device).manual_seed(seed)
|
83 |
-
images = self.pipe(
|
84 |
-
prompt,
|
85 |
-
generator=generator,
|
86 |
-
guidance_scale=guidance_scale,
|
87 |
-
num_inference_steps=num_steps,
|
88 |
-
output_type="mesh",
|
89 |
-
).images
|
90 |
-
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
91 |
-
export_to_ply(images[0], ply_path.name)
|
92 |
-
return self.to_glb(ply_path.name)
|
93 |
-
|
94 |
-
def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str:
|
95 |
-
generator = torch.Generator(device=self.device).manual_seed(seed)
|
96 |
-
images = self.pipe_img(
|
97 |
-
image,
|
98 |
-
generator=generator,
|
99 |
-
guidance_scale=guidance_scale,
|
100 |
-
num_inference_steps=num_steps,
|
101 |
-
output_type="mesh",
|
102 |
-
).images
|
103 |
-
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
104 |
-
export_to_ply(images[0], ply_path.name)
|
105 |
-
return self.to_glb(ply_path.name)
|
106 |
|
107 |
DESCRIPTION = """
|
108 |
# QwQ Edge 💬
|
@@ -128,6 +48,7 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
128 |
|
129 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
130 |
|
|
|
131 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
132 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
133 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -137,13 +58,11 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
137 |
)
|
138 |
model.eval()
|
139 |
|
140 |
-
# Voices for text-to-speech
|
141 |
TTS_VOICES = [
|
142 |
"en-US-JennyNeural", # @tts1
|
143 |
"en-US-GuyNeural", # @tts2
|
144 |
]
|
145 |
|
146 |
-
# Load multimodal processor and model (e.g. for OCR and image processing)
|
147 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
148 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
149 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
@@ -169,12 +88,14 @@ def clean_chat_history(chat_history):
|
|
169 |
cleaned.append(msg)
|
170 |
return cleaned
|
171 |
|
|
|
172 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
173 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
174 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
175 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
176 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
|
177 |
|
|
|
178 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
179 |
MODEL_ID_SD,
|
180 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
@@ -183,21 +104,31 @@ sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
183 |
).to(device)
|
184 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
185 |
|
|
|
186 |
if torch.cuda.is_available():
|
187 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
188 |
|
|
|
189 |
if USE_TORCH_COMPILE:
|
190 |
sd_pipe.compile()
|
191 |
|
|
|
192 |
if ENABLE_CPU_OFFLOAD:
|
193 |
sd_pipe.enable_model_cpu_offload()
|
194 |
|
|
|
|
|
195 |
def save_image(img: Image.Image) -> str:
|
196 |
"""Save a PIL image with a unique filename and return the path."""
|
197 |
unique_name = str(uuid.uuid4()) + ".png"
|
198 |
img.save(unique_name)
|
199 |
return unique_name
|
200 |
|
|
|
|
|
|
|
|
|
|
|
201 |
@spaces.GPU(duration=60, enable_queue=True)
|
202 |
def generate_image_fn(
|
203 |
prompt: str,
|
@@ -237,6 +168,7 @@ def generate_image_fn(
|
|
237 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
238 |
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
239 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
|
|
240 |
if device.type == "cuda":
|
241 |
with torch.autocast("cuda", dtype=torch.float16):
|
242 |
outputs = sd_pipe(**batch_options)
|
@@ -246,23 +178,6 @@ def generate_image_fn(
|
|
246 |
image_paths = [save_image(img) for img in images]
|
247 |
return image_paths, seed
|
248 |
|
249 |
-
@spaces.GPU(duration=120, enable_queue=True)
|
250 |
-
def generate_3d_fn(
|
251 |
-
prompt: str,
|
252 |
-
seed: int = 1,
|
253 |
-
guidance_scale: float = 15.0,
|
254 |
-
num_steps: int = 64,
|
255 |
-
randomize_seed: bool = False,
|
256 |
-
):
|
257 |
-
"""
|
258 |
-
Generate a 3D model from text using the ShapE pipeline.
|
259 |
-
Returns a tuple of (glb_file_path, used_seed).
|
260 |
-
"""
|
261 |
-
seed = int(randomize_seed_fn(seed, randomize_seed))
|
262 |
-
model3d = Model()
|
263 |
-
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
264 |
-
return glb_path, seed
|
265 |
-
|
266 |
@spaces.GPU
|
267 |
def generate(
|
268 |
input_dict: dict,
|
@@ -274,39 +189,16 @@ def generate(
|
|
274 |
repetition_penalty: float = 1.2,
|
275 |
):
|
276 |
"""
|
277 |
-
Generates chatbot responses with support for multimodal input, TTS, image generation
|
278 |
-
and 3D model generation.
|
279 |
-
|
280 |
Special commands:
|
281 |
- "@tts1" or "@tts2": triggers text-to-speech.
|
282 |
- "@image": triggers image generation using the SDXL pipeline.
|
283 |
-
- "@3d": triggers 3D model generation using the ShapE pipeline.
|
284 |
"""
|
285 |
text = input_dict["text"]
|
286 |
files = input_dict.get("files", [])
|
287 |
|
288 |
-
# --- 3D Generation branch ---
|
289 |
-
if text.strip().lower().startswith("@3d"):
|
290 |
-
prompt = text[len("@3d"):].strip()
|
291 |
-
yield "Generating 3D model..."
|
292 |
-
glb_path, used_seed = generate_3d_fn(
|
293 |
-
prompt=prompt,
|
294 |
-
seed=1,
|
295 |
-
guidance_scale=15.0,
|
296 |
-
num_steps=64,
|
297 |
-
randomize_seed=True,
|
298 |
-
)
|
299 |
-
# Convert the GLB file to a base64 data URL and embed it in an HTML <model-viewer> tag.
|
300 |
-
data_url = glb_to_data_url(glb_path)
|
301 |
-
html_output = f'''
|
302 |
-
<model-viewer src="{data_url}" alt="3D Model" auto-rotate camera-controls style="width: 100%; height: 400px;"></model-viewer>
|
303 |
-
<script type="module" src="https://unpkg.com/@google/model-viewer/dist/model-viewer.min.js"></script>
|
304 |
-
'''
|
305 |
-
yield gr.HTML(html_output)
|
306 |
-
return
|
307 |
-
|
308 |
-
# --- Image Generation branch ---
|
309 |
if text.strip().lower().startswith("@image"):
|
|
|
310 |
prompt = text[len("@image"):].strip()
|
311 |
yield "Generating image..."
|
312 |
image_paths, used_seed = generate_image_fn(
|
@@ -322,10 +214,10 @@ def generate(
|
|
322 |
use_resolution_binning=True,
|
323 |
num_images=1,
|
324 |
)
|
|
|
325 |
yield gr.Image(image_paths[0])
|
326 |
-
return
|
327 |
|
328 |
-
# --- Text and TTS branch ---
|
329 |
tts_prefix = "@tts"
|
330 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
331 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
@@ -333,9 +225,11 @@ def generate(
|
|
333 |
if is_tts and voice_index:
|
334 |
voice = TTS_VOICES[voice_index - 1]
|
335 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
|
|
336 |
conversation = [{"role": "user", "content": text}]
|
337 |
else:
|
338 |
voice = None
|
|
|
339 |
text = text.replace(tts_prefix, "").strip()
|
340 |
conversation = clean_chat_history(chat_history)
|
341 |
conversation.append({"role": "user", "content": text})
|
@@ -369,6 +263,7 @@ def generate(
|
|
369 |
time.sleep(0.01)
|
370 |
yield buffer
|
371 |
else:
|
|
|
372 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
373 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
374 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
@@ -397,6 +292,7 @@ def generate(
|
|
397 |
final_response = "".join(outputs)
|
398 |
yield final_response
|
399 |
|
|
|
400 |
if is_tts and voice:
|
401 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
402 |
yield gr.Audio(output_file, autoplay=True)
|
@@ -412,11 +308,12 @@ demo = gr.ChatInterface(
|
|
412 |
],
|
413 |
examples=[
|
414 |
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
415 |
-
["
|
416 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
417 |
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
|
418 |
["Write a Python function to check if a number is prime."],
|
419 |
["@tts2 What causes rainbows to form?"],
|
|
|
420 |
],
|
421 |
cache_examples=False,
|
422 |
type="messages",
|
@@ -429,4 +326,5 @@ demo = gr.ChatInterface(
|
|
429 |
)
|
430 |
|
431 |
if __name__ == "__main__":
|
432 |
-
|
|
|
|
4 |
import json
|
5 |
import time
|
6 |
import asyncio
|
|
|
7 |
from threading import Thread
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
import spaces
|
|
|
12 |
import numpy as np
|
13 |
from PIL import Image
|
14 |
import edge_tts
|
|
|
15 |
|
16 |
from transformers import (
|
17 |
AutoModelForCausalLM,
|
|
|
21 |
AutoProcessor,
|
22 |
)
|
23 |
from transformers.image_utils import load_image
|
|
|
24 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
DESCRIPTION = """
|
28 |
# QwQ Edge 💬
|
|
|
48 |
|
49 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
50 |
|
51 |
+
# Load text-only model and tokenizer
|
52 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
53 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
54 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
58 |
)
|
59 |
model.eval()
|
60 |
|
|
|
61 |
TTS_VOICES = [
|
62 |
"en-US-JennyNeural", # @tts1
|
63 |
"en-US-GuyNeural", # @tts2
|
64 |
]
|
65 |
|
|
|
66 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
67 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
68 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
88 |
cleaned.append(msg)
|
89 |
return cleaned
|
90 |
|
91 |
+
# Environment variables and parameters for Stable Diffusion XL
|
92 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
93 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
94 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
95 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
96 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
|
97 |
|
98 |
+
# Load the SDXL pipeline
|
99 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
100 |
MODEL_ID_SD,
|
101 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
|
|
104 |
).to(device)
|
105 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
106 |
|
107 |
+
# Ensure that the text encoder is in half-precision if using CUDA.
|
108 |
if torch.cuda.is_available():
|
109 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
110 |
|
111 |
+
# Optional: compile the model for speedup if enabled
|
112 |
if USE_TORCH_COMPILE:
|
113 |
sd_pipe.compile()
|
114 |
|
115 |
+
# Optional: offload parts of the model to CPU if needed
|
116 |
if ENABLE_CPU_OFFLOAD:
|
117 |
sd_pipe.enable_model_cpu_offload()
|
118 |
|
119 |
+
MAX_SEED = np.iinfo(np.int32).max
|
120 |
+
|
121 |
def save_image(img: Image.Image) -> str:
|
122 |
"""Save a PIL image with a unique filename and return the path."""
|
123 |
unique_name = str(uuid.uuid4()) + ".png"
|
124 |
img.save(unique_name)
|
125 |
return unique_name
|
126 |
|
127 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
128 |
+
if randomize_seed:
|
129 |
+
seed = random.randint(0, MAX_SEED)
|
130 |
+
return seed
|
131 |
+
|
132 |
@spaces.GPU(duration=60, enable_queue=True)
|
133 |
def generate_image_fn(
|
134 |
prompt: str,
|
|
|
168 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
169 |
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
170 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
171 |
+
# Wrap the pipeline call in autocast if using CUDA
|
172 |
if device.type == "cuda":
|
173 |
with torch.autocast("cuda", dtype=torch.float16):
|
174 |
outputs = sd_pipe(**batch_options)
|
|
|
178 |
image_paths = [save_image(img) for img in images]
|
179 |
return image_paths, seed
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
@spaces.GPU
|
182 |
def generate(
|
183 |
input_dict: dict,
|
|
|
189 |
repetition_penalty: float = 1.2,
|
190 |
):
|
191 |
"""
|
192 |
+
Generates chatbot responses with support for multimodal input, TTS, and image generation.
|
|
|
|
|
193 |
Special commands:
|
194 |
- "@tts1" or "@tts2": triggers text-to-speech.
|
195 |
- "@image": triggers image generation using the SDXL pipeline.
|
|
|
196 |
"""
|
197 |
text = input_dict["text"]
|
198 |
files = input_dict.get("files", [])
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
if text.strip().lower().startswith("@image"):
|
201 |
+
# Remove the "@image" tag and use the rest as prompt
|
202 |
prompt = text[len("@image"):].strip()
|
203 |
yield "Generating image..."
|
204 |
image_paths, used_seed = generate_image_fn(
|
|
|
214 |
use_resolution_binning=True,
|
215 |
num_images=1,
|
216 |
)
|
217 |
+
# Yield the generated image so that the chat interface displays it.
|
218 |
yield gr.Image(image_paths[0])
|
219 |
+
return # Exit early
|
220 |
|
|
|
221 |
tts_prefix = "@tts"
|
222 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
223 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
|
225 |
if is_tts and voice_index:
|
226 |
voice = TTS_VOICES[voice_index - 1]
|
227 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
228 |
+
# Clear previous chat history for a fresh TTS request.
|
229 |
conversation = [{"role": "user", "content": text}]
|
230 |
else:
|
231 |
voice = None
|
232 |
+
# Remove any stray @tts tags and build the conversation history.
|
233 |
text = text.replace(tts_prefix, "").strip()
|
234 |
conversation = clean_chat_history(chat_history)
|
235 |
conversation.append({"role": "user", "content": text})
|
|
|
263 |
time.sleep(0.01)
|
264 |
yield buffer
|
265 |
else:
|
266 |
+
|
267 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
268 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
269 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
292 |
final_response = "".join(outputs)
|
293 |
yield final_response
|
294 |
|
295 |
+
# If TTS was requested, convert the final response to speech.
|
296 |
if is_tts and voice:
|
297 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
298 |
yield gr.Audio(output_file, autoplay=True)
|
|
|
308 |
],
|
309 |
examples=[
|
310 |
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
311 |
+
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
|
312 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
313 |
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
|
314 |
["Write a Python function to check if a number is prime."],
|
315 |
["@tts2 What causes rainbows to form?"],
|
316 |
+
|
317 |
],
|
318 |
cache_examples=False,
|
319 |
type="messages",
|
|
|
326 |
)
|
327 |
|
328 |
if __name__ == "__main__":
|
329 |
+
# To create a public link, set share=True in launch().
|
330 |
+
demo.queue(max_size=20).launch(share=True)
|