Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
from collections.abc import Iterator
|
3 |
from threading import Thread
|
4 |
import gradio as gr
|
5 |
import spaces
|
@@ -35,7 +34,7 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
35 |
|
36 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
37 |
|
38 |
-
#
|
39 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
40 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
41 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -54,7 +53,7 @@ TTS_VOICES = [
|
|
54 |
"en-US-JasonNeural", # @tts6
|
55 |
]
|
56 |
|
57 |
-
#
|
58 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
59 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
60 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
@@ -69,6 +68,18 @@ async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
|
69 |
await communicate.save(output_file)
|
70 |
return output_file
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
@spaces.GPU
|
73 |
def generate(
|
74 |
input_dict: dict,
|
@@ -80,14 +91,14 @@ def generate(
|
|
80 |
repetition_penalty: float = 1.2,
|
81 |
):
|
82 |
"""
|
83 |
-
Generates chatbot response and handles TTS requests with multimodal input support.
|
84 |
-
If the query
|
85 |
-
|
86 |
"""
|
87 |
text = input_dict["text"]
|
88 |
files = input_dict.get("files", [])
|
89 |
|
90 |
-
#
|
91 |
if len(files) > 1:
|
92 |
images = [load_image(image) for image in files]
|
93 |
elif len(files) == 1:
|
@@ -95,33 +106,35 @@ def generate(
|
|
95 |
else:
|
96 |
images = []
|
97 |
|
98 |
-
# Check
|
99 |
tts_prefix = "@tts"
|
100 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 7))
|
101 |
voice_index = next((i for i in range(1, 7) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
102 |
-
|
103 |
if is_tts and voice_index:
|
104 |
voice = TTS_VOICES[voice_index - 1]
|
105 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
106 |
-
# Clear
|
107 |
conversation = [{"role": "user", "content": text}]
|
108 |
else:
|
109 |
voice = None
|
110 |
text = text.replace(tts_prefix, "").strip()
|
111 |
-
|
|
|
|
|
112 |
|
113 |
-
#
|
114 |
if images:
|
115 |
-
messages = [
|
116 |
-
|
|
|
117 |
*[{"type": "image", "image": image} for image in images],
|
118 |
{"type": "text", "text": text},
|
119 |
-
]
|
120 |
-
]
|
121 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
122 |
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
|
123 |
|
124 |
-
# Handle generation for multimodal input using model_m
|
125 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
126 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
127 |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
@@ -134,9 +147,8 @@ def generate(
|
|
134 |
buffer = buffer.replace("<|im_end|>", "")
|
135 |
time.sleep(0.01)
|
136 |
yield buffer
|
137 |
-
|
138 |
else:
|
139 |
-
#
|
140 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
141 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
142 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
@@ -155,7 +167,7 @@ def generate(
|
|
155 |
num_beams=1,
|
156 |
repetition_penalty=repetition_penalty,
|
157 |
)
|
158 |
-
t = Thread(target=model.generate, kwargs=
|
159 |
t.start()
|
160 |
|
161 |
outputs = []
|
@@ -164,11 +176,9 @@ def generate(
|
|
164 |
yield "".join(outputs)
|
165 |
|
166 |
final_response = "".join(outputs)
|
167 |
-
|
168 |
-
# Yield text response first.
|
169 |
yield final_response
|
170 |
|
171 |
-
# If TTS was requested, yield audio output separately.
|
172 |
if is_tts and voice:
|
173 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
174 |
yield gr.Audio(output_file, autoplay=True)
|
|
|
1 |
import os
|
|
|
2 |
from threading import Thread
|
3 |
import gradio as gr
|
4 |
import spaces
|
|
|
34 |
|
35 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
36 |
|
37 |
+
# Text-only model and tokenizer
|
38 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
39 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
40 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
53 |
"en-US-JasonNeural", # @tts6
|
54 |
]
|
55 |
|
56 |
+
# Multimodal (OCR) model and processor
|
57 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
58 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
59 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
68 |
await communicate.save(output_file)
|
69 |
return output_file
|
70 |
|
71 |
+
def clean_chat_history(chat_history):
|
72 |
+
"""
|
73 |
+
Filter out any entries whose content is not a string.
|
74 |
+
This avoids non-text objects (like tuples or Audio) from being concatenated.
|
75 |
+
"""
|
76 |
+
cleaned = []
|
77 |
+
for msg in chat_history:
|
78 |
+
# Only keep dict messages that have a string 'content'
|
79 |
+
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
80 |
+
cleaned.append(msg)
|
81 |
+
return cleaned
|
82 |
+
|
83 |
@spaces.GPU
|
84 |
def generate(
|
85 |
input_dict: dict,
|
|
|
91 |
repetition_penalty: float = 1.2,
|
92 |
):
|
93 |
"""
|
94 |
+
Generates a chatbot response and handles TTS requests with multimodal input support.
|
95 |
+
If the user’s query begins with an @tts command, previous chat history is ignored
|
96 |
+
(clearing any non-text outputs). Otherwise, the chat history is cleaned to include only text.
|
97 |
"""
|
98 |
text = input_dict["text"]
|
99 |
files = input_dict.get("files", [])
|
100 |
|
101 |
+
# Determine if images are provided
|
102 |
if len(files) > 1:
|
103 |
images = [load_image(image) for image in files]
|
104 |
elif len(files) == 1:
|
|
|
106 |
else:
|
107 |
images = []
|
108 |
|
109 |
+
# Check for TTS prefix
|
110 |
tts_prefix = "@tts"
|
111 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 7))
|
112 |
voice_index = next((i for i in range(1, 7) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
113 |
+
|
114 |
if is_tts and voice_index:
|
115 |
voice = TTS_VOICES[voice_index - 1]
|
116 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
117 |
+
# Clear any previous chat history when using TTS to avoid type errors
|
118 |
conversation = [{"role": "user", "content": text}]
|
119 |
else:
|
120 |
voice = None
|
121 |
text = text.replace(tts_prefix, "").strip()
|
122 |
+
# Clean the chat history to include only messages with string content
|
123 |
+
conversation = clean_chat_history(chat_history)
|
124 |
+
conversation.append({"role": "user", "content": text})
|
125 |
|
126 |
+
# Multimodal branch if images are provided
|
127 |
if images:
|
128 |
+
messages = [{
|
129 |
+
"role": "user",
|
130 |
+
"content": [
|
131 |
*[{"type": "image", "image": image} for image in images],
|
132 |
{"type": "text", "text": text},
|
133 |
+
]
|
134 |
+
}]
|
135 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
136 |
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
|
137 |
|
|
|
138 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
139 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
140 |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
|
|
147 |
buffer = buffer.replace("<|im_end|>", "")
|
148 |
time.sleep(0.01)
|
149 |
yield buffer
|
|
|
150 |
else:
|
151 |
+
# Text-only branch using the text model
|
152 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
153 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
154 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
167 |
num_beams=1,
|
168 |
repetition_penalty=repetition_penalty,
|
169 |
)
|
170 |
+
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
171 |
t.start()
|
172 |
|
173 |
outputs = []
|
|
|
176 |
yield "".join(outputs)
|
177 |
|
178 |
final_response = "".join(outputs)
|
179 |
+
# Yield text response first
|
|
|
180 |
yield final_response
|
181 |
|
|
|
182 |
if is_tts and voice:
|
183 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
184 |
yield gr.Audio(output_file, autoplay=True)
|