Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from collections.abc import Iterator | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import edge_tts | |
import asyncio | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
DESCRIPTION = """ | |
# QwQ Edge 💬 | |
""" | |
css = ''' | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
#duplicate-button { | |
margin: auto; | |
color: #fff; | |
background: #1565c0; | |
border-radius: 100vh; | |
} | |
''' | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model_id = "prithivMLmods/FastThink-0.5B-Tiny" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
model.eval() | |
async def text_to_speech(text: str, output_file="output.mp3"): | |
"""Convert text to speech using Edge TTS and save as MP3""" | |
voice = "en-US-GuyNeural" # Change this to your preferred voice | |
communicate = edge_tts.Communicate(text, voice) | |
await communicate.save(output_file) | |
return output_file | |
def generate( | |
message: str, | |
chat_history: list[dict], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
): | |
"""Generates chatbot response and handles TTS requests""" | |
is_tts = message.strip().lower().startswith("@tts") | |
message = message.replace("@tts", "").strip() | |
conversation = [*chat_history, {"role": "user", "content": message}] | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
final_response = "".join(outputs) | |
if is_tts: | |
output_file = asyncio.run(text_to_speech(final_response)) | |
yield gr.Audio(output_file, autoplay=True) # Return playable audio | |
else: | |
yield final_response # Return text response | |
demo = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
], | |
stop_btn=None, | |
examples=[ | |
["@tts Who is Nikola Tesla, and why did he die?"], | |
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"], | |
["Write a Python function to check if a number is prime."], | |
["@tts What causes rainbows to form?"], | |
["Rewrite the following sentence in passive voice: 'The dog chased the cat.'"], | |
["@tts What is the capital of France?"], | |
], | |
cache_examples=False, | |
type="messages", | |
description=DESCRIPTION, | |
css=css, | |
fill_height=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() |