import gradio as gr from transformers.image_utils import load_image from threading import Thread import time import torch import spaces from PIL import Image import requests from io import BytesIO import cv2 import numpy as np from transformers import ( Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer, AutoModelForImageTextToText, ) # Helper function to return a progress bar HTML snippet. def progress_bar_html(label: str) -> str: return f''' <div style="display: flex; align-items: center;"> <span style="margin-right: 10px; font-size: 14px;">{label}</span> <div style="width: 110px; height: 5px; background-color: #FFB6C1; border-radius: 2px; overflow: hidden;"> <div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div> </div> </div> <style> @keyframes loading {{ 0% {{ transform: translateX(-100%); }} 100% {{ transform: translateX(100%); }} }} </style> ''' # Helper function to downsample a video into 10 evenly spaced frames. def downsample_video(video_path): vidcap = cv2.VideoCapture(video_path) total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = vidcap.get(cv2.CAP_PROP_FPS) frames = [] # Sample 10 evenly spaced frames. frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) for i in frame_indices: vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) success, image = vidcap.read() if success: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(image) timestamp = round(i / fps, 2) frames.append((pil_image, timestamp)) vidcap.release() return frames # Model and processor setups # Setup for Qwen2VL OCR branch (default). QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # or use "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct" qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True) qwen_model = Qwen2VLForConditionalGeneration.from_pretrained( QV_MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16 ).to("cuda").eval() # Setup for Aya-Vision branch. AYA_MODEL_ID = "CohereForAI/aya-vision-8b" aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID) aya_model = AutoModelForImageTextToText.from_pretrained( AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16 ) # --------------------------- # Main Inference Function # --------------------------- @spaces.GPU def model_inference(input_dict, history): text = input_dict["text"].strip() files = input_dict.get("files", []) # Branch for video inference with Aya-Vision using @video-infer. if text.lower().startswith("@video-infer"): prompt = text[len("@video-infer"):].strip() if not files: yield "Error: Please provide a video for the @video-infer feature." return video_path = files[0] frames = downsample_video(video_path) if not frames: yield "Error: Could not extract frames from the video." return # Build messages: start with the prompt then add each frame with its timestamp. content_list = [] content_list.append({"type": "text", "text": prompt}) for frame, timestamp in frames: content_list.append({"type": "text", "text": f"Frame {timestamp}:"}) content_list.append({"type": "image", "image": frame}) messages = [{ "role": "user", "content": content_list, }] inputs = aya_processor.apply_chat_template( messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(aya_model.device) streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict( inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, temperature=0.3 ) thread = Thread(target=aya_model.generate, kwargs=generation_kwargs) thread.start() buffer = "" yield progress_bar_html("Processing video with Aya-Vision-8b") for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) yield buffer return # Branch for single image inference with Aya-Vision using @aya-vision. if text.lower().startswith("@aya-vision"): text_prompt = text[len("@aya-vision"):].strip() if not files: yield "Error: Please provide an image for the @aya-vision feature." return else: # Use the first provided image. image = load_image(files[0]) yield progress_bar_html("Processing with Aya-Vision-8b") messages = [{ "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": text_prompt}, ], }] inputs = aya_processor.apply_chat_template( messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(aya_model.device) streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict( inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, temperature=0.3 ) thread = Thread(target=aya_model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) yield buffer return # Default branch: Use Qwen2VL OCR for text (with optional images). if len(files) > 1: images = [load_image(image) for image in files] elif len(files) == 1: images = [load_image(files[0])] else: images = [] if text == "" and not images: yield "Error: Please input a query and optionally image(s)." return if text == "" and images: yield "Error: Please input a text query along with the image(s)." return messages = [{ "role": "user", "content": [ *[{"type": "image", "image": image} for image in images], {"type": "text", "text": text}, ], }] prompt = qwen_processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = qwen_processor( text=[prompt], images=images if images else None, return_tensors="pt", padding=True, ).to("cuda") streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs) thread.start() buffer = "" yield progress_bar_html("Processing with Qwen2VL OCR") for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) yield buffer # Gradio Interface Setup examples = [ [{"text": "@aya-vision Summarize the letter", "files": ["examples/1.png"]}], [{"text": "@aya-vision Extract JSON from the image", "files": ["example_images/document.jpg"]}], [{"text": "@video-infer Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}], [{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}], [{"text": "@aya-vision Describe the photo", "files": ["examples/3.png"]}], [{"text": "@aya-vision Summarize the full image in detail", "files": ["examples/2.jpg"]}], [{"text": "@aya-vision Describe this image.", "files": ["example_images/campeones.jpg"]}], [{"text": "@aya-vision What is this UI about?", "files": ["example_images/s2w_example.png"]}], [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], [{"text": "@aya-vision Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], ] demo = gr.ChatInterface( fn=model_inference, description="# **Multimodal OCR `@aya-vision for image, @video-infer for video`**", examples=examples, textbox=gr.MultimodalTextbox( label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="Tag @aya-vision for Aya-Vision image infer, @video-infer for Aya-Vision video infer, default runs Qwen2VL OCR" ), stop_btn="Stop Generation", multimodal=True, cache_examples=False, ) demo.launch(debug=True)