Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer | |
| from transformers.image_utils import load_image | |
| from threading import Thread | |
| import time | |
| import torch | |
| import spaces | |
| MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
| processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
| model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to("cuda").eval() | |
| def model_inference(input_dict, history): | |
| text = input_dict["text"] | |
| files = input_dict["files"] | |
| # Load images if provided | |
| if len(files) > 1: | |
| images = [load_image(image) for image in files] | |
| elif len(files) == 1: | |
| images = [load_image(files[0])] | |
| else: | |
| images = [] | |
| # Validate input | |
| if text == "" and not images: | |
| gr.Error("Please input a query and optionally image(s).") | |
| return | |
| if text == "" and images: | |
| gr.Error("Please input a text query along with the image(s).") | |
| return | |
| # Prepare messages for the model | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| *[{"type": "image", "image": image} for image in images], | |
| {"type": "text", "text": text}, | |
| ], | |
| } | |
| ] | |
| # Apply chat template and process inputs | |
| prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt], | |
| images=images if images else None, | |
| return_tensors="pt", | |
| padding=True, | |
| ).to("cuda") | |
| # Set up streamer for real-time output | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
| # Start generation in a separate thread | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| # Stream the output | |
| buffer = "" | |
| yield "Thinking..." | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer | |
| # Example inputs | |
| examples = [ | |
| [{"text": "summarize the letter", "files": ["examples/1.png"]}], | |
| [{"text": "Describe the document?", "files": ["example_images/document.jpg"]}], | |
| [{"text": "Describe the photo", "files": ["examples/3.png"]}], | |
| [{"text": "Summarize the full image in detail", "files": ["examples/2.png"]}], | |
| [{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], | |
| [{"text": "What does this say?", "files": ["example_images/math.jpg"]}], | |
| [{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], | |
| [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], | |
| [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], | |
| [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], | |
| ] | |
| demo = gr.ChatInterface( | |
| fn=model_inference, | |
| description="# **Multimodal OCR**", | |
| examples=examples, | |
| textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), | |
| stop_btn="Stop Generation", | |
| multimodal=True, | |
| cache_examples=False, | |
| ) | |
| demo.launch(debug=True) |