Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from transformers.image_utils import load_image | |
| from threading import Thread | |
| import time | |
| import torch | |
| import spaces | |
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| from transformers import ( | |
| Qwen2VLForConditionalGeneration, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| from transformers import Qwen2_5_VLForConditionalGeneration | |
| # Helper Functions | |
| def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str: | |
| """ | |
| Returns an HTML snippet for a thin animated progress bar with a label. | |
| Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision. | |
| """ | |
| return f''' | |
| <div style="display: flex; align-items: center;"> | |
| <span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
| <div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;"> | |
| <div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div> | |
| </div> | |
| </div> | |
| <style> | |
| @keyframes loading {{ | |
| 0% {{ transform: translateX(-100%); }} | |
| 100% {{ transform: translateX(100%); }} | |
| }} | |
| </style> | |
| ''' | |
| def downsample_video(video_path): | |
| """ | |
| Downsamples a video file by extracting 10 evenly spaced frames. | |
| Returns a list of tuples (PIL.Image, timestamp). | |
| """ | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| frames = [] | |
| if total_frames <= 0 or fps <= 0: | |
| vidcap.release() | |
| return frames | |
| frame_indices = np.linspace(0, total_frames - 1, 25, dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| # Model and Processor Setup | |
| QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
| qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True) | |
| qwen_model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| QV_MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to("cuda").eval() | |
| ROLMOCR_MODEL_ID = "reducto/RolmOCR" | |
| rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True) | |
| rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| ROLMOCR_MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16 | |
| ).to("cuda").eval() | |
| # Main Inference Function | |
| def model_inference(input_dict, history, use_rolmocr=False): | |
| text = input_dict["text"].strip() | |
| files = input_dict.get("files", []) | |
| if not text and not files: | |
| yield "Error: Please input a text query or provide files (images or videos)." | |
| return | |
| # Process files: images and videos | |
| image_list = [] | |
| for idx, file in enumerate(files): | |
| if file.lower().endswith((".mp4", ".avi", ".mov")): | |
| frames = downsample_video(file) | |
| if not frames: | |
| yield "Error: Could not extract frames from the video." | |
| return | |
| for frame, timestamp in frames: | |
| label = f"Video {idx+1} Frame {timestamp}:" | |
| image_list.append((label, frame)) | |
| else: | |
| try: | |
| img = load_image(file) | |
| label = f"Image {idx+1}:" | |
| image_list.append((label, img)) | |
| except Exception as e: | |
| yield f"Error loading image: {str(e)}" | |
| return | |
| # Build content list | |
| content = [{"type": "text", "text": text}] | |
| for label, img in image_list: | |
| content.append({"type": "text", "text": label}) | |
| content.append({"type": "image", "image": img}) | |
| messages = [{"role": "user", "content": content}] | |
| # Select processor and model | |
| processor = rolmocr_processor if use_rolmocr else qwen_processor | |
| model = rolmocr_model if use_rolmocr else qwen_model | |
| model_name = "RolmOCR" if use_rolmocr else "Qwen2VL OCR" | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| all_images = [item["image"] for item in content if item["type"] == "image"] | |
| inputs = processor( | |
| text=[prompt_full], | |
| images=all_images if all_images else None, | |
| return_tensors="pt", | |
| padding=True, | |
| ).to("cuda") | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html(f"Processing with {model_name}") | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| # Gradio Interface | |
| examples = [ | |
| [{"text": "OCR the Text in the Image", "files": ["rolm/1.jpeg"]}], | |
| [{"text": "Explain the Ad in Detail", "files": ["examples/videoplayback.mp4"]}], | |
| [{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}], | |
| ] | |
| demo = gr.ChatInterface( | |
| fn=model_inference, | |
| description="# **[Multimodal OCR](https://huggingface.co/prithivMLmods/Qwen2-VL-OCR-2B-Instruct)**", | |
| examples=examples, | |
| textbox=gr.MultimodalTextbox( | |
| label="Query Input", | |
| file_types=["image", "video"], | |
| file_count="multiple", | |
| placeholder="Input your query and optionally upload image(s) or video(s). Select the model using the checkbox." | |
| ), | |
| stop_btn="Stop Generation", | |
| multimodal=True, | |
| cache_examples=False, | |
| theme="bethecloud/storj_theme", | |
| additional_inputs=[ | |
| gr.Checkbox( | |
| label="Use RolmOCR", | |
| value=False, | |
| info="Check to use RolmOCR, uncheck to use Qwen2VL OCR" | |
| ) | |
| ], | |
| ) | |
| demo.launch(share=True, mcp_server=True, debug=True, ssr_mode=False) |