Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import time | |
import asyncio | |
import re | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image | |
import edge_tts | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
Qwen2VLForConditionalGeneration, | |
AutoProcessor, | |
) | |
from transformers.image_utils import load_image | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# Load text-only model and tokenizer for chat generation | |
model_id = "prithivMLmods/FastThink-0.5B-Tiny" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
model.eval() | |
# TTS Voices and processor for multimodal chat | |
TTS_VOICES = [ | |
"en-US-JennyNeural", # @tts1 | |
"en-US-GuyNeural", # @tts2 | |
] | |
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True) | |
model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_VL, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
# A helper function to convert text to speech via Edge TTS | |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"): | |
communicate = edge_tts.Communicate(text, voice) | |
await communicate.save(output_file) | |
return output_file | |
def clean_chat_history(chat_history): | |
cleaned = [] | |
for msg in chat_history: | |
if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
cleaned.append(msg) | |
return cleaned | |
# Restricted words check (if any) | |
bad_words = json.loads(os.getenv('BAD_WORDS', "[]")) | |
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]")) | |
default_negative = os.getenv("default_negative", "") | |
def check_text(prompt, negative=""): | |
for i in bad_words: | |
if i in prompt: | |
return True | |
for i in bad_words_negative: | |
if i in negative: | |
return True | |
return False | |
# Use the same random seed function for both text and image generation | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
# Set dtype based on device: use half for CUDA, float32 otherwise. | |
dtype = torch.float16 if device.type == "cuda" else torch.float32 | |
# Load image generation pipelines for the three model choices. | |
if torch.cuda.is_available(): | |
# Lightning 5 model | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V5.0_Lightning", | |
torch_dtype=dtype, | |
use_safetensors=True, | |
add_watermarker=False | |
).to(device) | |
pipe.text_encoder = pipe.text_encoder.half() | |
if ENABLE_CPU_OFFLOAD: | |
pipe.enable_model_cpu_offload() | |
else: | |
pipe.to(device) | |
print("Loaded RealVisXL_V5.0_Lightning on Device!") | |
if USE_TORCH_COMPILE: | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
print("Model RealVisXL_V5.0_Lightning Compiled!") | |
# Lightning 4 model | |
pipe2 = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V4.0_Lightning", | |
torch_dtype=dtype, | |
use_safetensors=True, | |
add_watermarker=False, | |
).to(device) | |
pipe2.text_encoder = pipe2.text_encoder.half() | |
if ENABLE_CPU_OFFLOAD: | |
pipe2.enable_model_cpu_offload() | |
else: | |
pipe2.to(device) | |
print("Loaded RealVisXL_V4.0 on Device!") | |
if USE_TORCH_COMPILE: | |
pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True) | |
print("Model RealVisXL_V4.0 Compiled!") | |
# Turbo v3 model | |
pipe3 = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V3.0_Turbo", | |
torch_dtype=dtype, | |
use_safetensors=True, | |
add_watermarker=False, | |
).to(device) | |
pipe3.text_encoder = pipe3.text_encoder.half() | |
if ENABLE_CPU_OFFLOAD: | |
pipe3.enable_model_cpu_offload() | |
else: | |
pipe3.to(device) | |
print("Loaded Animagine XL 4.0 on Device!") | |
if USE_TORCH_COMPILE: | |
pipe3.unet = torch.compile(pipe3.unet, mode="reduce-overhead", fullgraph=True) | |
print("Model Animagine XL 4.0 Compiled!") | |
else: | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V5.0_Lightning", | |
torch_dtype=dtype, | |
use_safetensors=True, | |
add_watermarker=False | |
).to(device) | |
pipe2 = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V4.0_Lightning", | |
torch_dtype=dtype, | |
use_safetensors=True, | |
add_watermarker=False, | |
).to(device) | |
pipe3 = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V3.0_Turbo", | |
torch_dtype=dtype, | |
use_safetensors=True, | |
add_watermarker=False, | |
).to(device) | |
print("Running on CPU; models loaded in float32.") | |
# Define available model choices and their mapping. | |
DEFAULT_MODEL = "Lightning 5" | |
MODEL_CHOICES = [DEFAULT_MODEL, "Lightning 4", "Turbo v3"] | |
models = { | |
"Lightning 5": pipe, | |
"Lightning 4": pipe2, | |
"Turbo v3": pipe3 | |
} | |
def generate_image_grid(prompt: str, seed: int, grid_size: str, width: int, height: int, | |
guidance_scale: float, randomize_seed: bool, model_choice: str): | |
if check_text(prompt, ""): | |
raise ValueError("Prompt contains restricted words.") | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
# Define supported grid sizes. | |
grid_sizes = { | |
"2x1": (2, 1), | |
"1x2": (1, 2), | |
"2x2": (2, 2), | |
"1x1": (1, 1) | |
} | |
grid_size_tuple = grid_sizes.get(grid_size, (1, 1)) | |
num_images = grid_size_tuple[0] * grid_size_tuple[1] | |
options = { | |
"prompt": prompt, | |
"negative_prompt": default_negative, | |
"width": width, | |
"height": height, | |
"guidance_scale": guidance_scale, | |
"num_inference_steps": 30, | |
"generator": generator, | |
"num_images_per_prompt": num_images, | |
"use_resolution_binning": True, | |
"output_type": "pil", | |
} | |
if device.type == "cuda": | |
torch.cuda.empty_cache() | |
selected_pipe = models.get(model_choice, pipe) | |
images = selected_pipe(**options).images | |
# Create a grid image. | |
grid_img = Image.new('RGB', (width * grid_size_tuple[0], height * grid_size_tuple[1])) | |
for i, img in enumerate(images[:num_images]): | |
grid_img.paste(img, ((i % grid_size_tuple[0]) * width, (i // grid_size_tuple[0]) * height)) | |
unique_name = str(uuid.uuid4()) + ".png" | |
grid_img.save(unique_name) | |
return [unique_name], seed | |
# ----------------------------- | |
# Main generate() Function | |
# ----------------------------- | |
def generate( | |
input_dict: dict, | |
chat_history: list[dict], | |
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
): | |
text = input_dict["text"] | |
files = input_dict.get("files", []) | |
lower_text = text.lower().strip() | |
# Check if the prompt is an image generation command using model flags. | |
if (lower_text.startswith("@lightningv5") or | |
lower_text.startswith("@lightningv4") or | |
lower_text.startswith("@turbov3")): | |
# Determine model choice based on flag. | |
model_choice = None | |
if "@lightningv5" in lower_text: | |
model_choice = "Lightning 5" | |
elif "@lightningv4" in lower_text: | |
model_choice = "Lightning 4" | |
elif "@turbov3" in lower_text: | |
model_choice = "Turbo v3" | |
# Parse grid size flag e.g. "@2x2" | |
grid_match = re.search(r"@(\d+x\d+)", lower_text) | |
grid_size = grid_match.group(1) if grid_match else "1x1" | |
# Remove the model and grid flags from the prompt. | |
prompt_clean = re.sub(r"@lightningv5", "", text, flags=re.IGNORECASE) | |
prompt_clean = re.sub(r"@lightningv4", "", prompt_clean, flags=re.IGNORECASE) | |
prompt_clean = re.sub(r"@turbov3", "", prompt_clean, flags=re.IGNORECASE) | |
prompt_clean = re.sub(r"@\d+x\d+", "", prompt_clean, flags=re.IGNORECASE) | |
prompt_clean = prompt_clean.strip().strip('"') | |
# Default parameters for image generation. | |
width = 1024 | |
height = 1024 | |
guidance_scale = 6.0 | |
seed_val = 0 | |
randomize_seed = True | |
use_resolution_binning = True | |
yield "Generating image grid..." | |
image_paths, used_seed = generate_image_grid( | |
prompt_clean, | |
seed_val, | |
grid_size, | |
width, | |
height, | |
guidance_scale, | |
randomize_seed, | |
model_choice, | |
) | |
yield gr.Image(image_paths[0]) | |
return | |
# Otherwise, handle text/chat (and TTS) generation. | |
tts_prefix = "@tts" | |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3)) | |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None) | |
if is_tts and voice_index: | |
voice = TTS_VOICES[voice_index - 1] | |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip() | |
conversation = [{"role": "user", "content": text}] | |
else: | |
voice = None | |
text = text.replace(tts_prefix, "").strip() | |
conversation = clean_chat_history(chat_history) | |
conversation.append({"role": "user", "content": text}) | |
if files: | |
images = [load_image(image) for image in files] if len(files) > 1 else [load_image(files[0])] | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield "Thinking..." | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
else: | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
"input_ids": input_ids, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"top_p": top_p, | |
"top_k": top_k, | |
"temperature": temperature, | |
"num_beams": 1, | |
"repetition_penalty": repetition_penalty, | |
} | |
t = Thread(target=model.generate, kwargs=generation_kwargs) | |
t.start() | |
outputs = [] | |
for new_text in streamer: | |
outputs.append(new_text) | |
yield "".join(outputs) | |
final_response = "".join(outputs) | |
yield final_response | |
if is_tts and voice: | |
output_file = asyncio.run(text_to_speech(final_response, voice)) | |
yield gr.Audio(output_file, autoplay=True) | |
DESCRIPTION = """ | |
# IMAGINEO 4K ⚡ | |
""" | |
css = ''' | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
#duplicate-button { | |
margin: auto; | |
color: #fff; | |
background: #1565c0; | |
border-radius: 100vh; | |
} | |
''' | |
demo = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
], | |
examples=[ | |
["@tts1 Who is Nikola Tesla, and why did he die?"], | |
['@lightningv5 @2x2 "Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"'], | |
['@lightningv4 @1x1 "A serene landscape with mountains"'], | |
['@turbov3 @2x1 "Abstract art, colorful and vibrant"'], | |
["Write a Python function to check if a number is prime."], | |
["@tts2 What causes rainbows to form?"], | |
], | |
cache_examples=False, | |
type="messages", | |
description=DESCRIPTION, | |
css=css, | |
fill_height=True, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(share=True) |