prithivMLmods commited on
Commit
e6f15d9
·
verified ·
1 Parent(s): 6cdb5fa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -7
app.py CHANGED
@@ -65,8 +65,6 @@ def glb_to_data_url(glb_path: str) -> str:
65
  # ---------------------------
66
  # Sambanova DeepseekR1 Clients and Chat Function
67
  # ---------------------------
68
-
69
- #deepseek-ai/DeepSeek-R1-Distill-Llama-70B
70
  sambanova_client = openai.OpenAI(
71
  api_key=os.environ.get("SAMBANOVA_API_KEY"),
72
  base_url="https://api.sambanova.ai/v1",
@@ -130,7 +128,6 @@ class Model:
130
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
131
  self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
132
  self.pipe.to(self.device)
133
- # Ensure the text encoder is in half precision to avoid dtype mismatches.
134
  if torch.cuda.is_available():
135
  try:
136
  self.pipe.text_encoder = self.pipe.text_encoder.half()
@@ -139,7 +136,6 @@ class Model:
139
 
140
  self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
141
  self.pipe_img.to(self.device)
142
- # Use getattr with a default value to avoid AttributeError if text_encoder is missing.
143
  if torch.cuda.is_available():
144
  text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
145
  if text_encoder_img is not None:
@@ -147,7 +143,6 @@ class Model:
147
 
148
  def to_glb(self, ply_path: str) -> str:
149
  mesh = trimesh.load(ply_path)
150
- # Rotate the mesh for proper orientation
151
  rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
152
  mesh.apply_transform(rot)
153
  rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
@@ -379,7 +374,7 @@ def clean_chat_history(chat_history):
379
  # ---------------------------
380
  # Stable Diffusion XL Pipeline for Image Generation
381
  # ---------------------------
382
- MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") #SG161222/RealVisXL_V5.0_Lightning
383
  MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
384
  USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
385
  ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
@@ -593,7 +588,7 @@ def generate(
593
  # --- DeepSeek-R1 branch ---
594
  if text.strip().lower().startswith("@deepseekr1"):
595
  prompt = text[len("@deepseekr1"):].strip()
596
- yield "🔍 Querying DeepSeek-R1..."
597
  response = chat_response(prompt)
598
  yield response
599
  return
 
65
  # ---------------------------
66
  # Sambanova DeepseekR1 Clients and Chat Function
67
  # ---------------------------
 
 
68
  sambanova_client = openai.OpenAI(
69
  api_key=os.environ.get("SAMBANOVA_API_KEY"),
70
  base_url="https://api.sambanova.ai/v1",
 
128
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
129
  self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
130
  self.pipe.to(self.device)
 
131
  if torch.cuda.is_available():
132
  try:
133
  self.pipe.text_encoder = self.pipe.text_encoder.half()
 
136
 
137
  self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
138
  self.pipe_img.to(self.device)
 
139
  if torch.cuda.is_available():
140
  text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
141
  if text_encoder_img is not None:
 
143
 
144
  def to_glb(self, ply_path: str) -> str:
145
  mesh = trimesh.load(ply_path)
 
146
  rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
147
  mesh.apply_transform(rot)
148
  rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
 
374
  # ---------------------------
375
  # Stable Diffusion XL Pipeline for Image Generation
376
  # ---------------------------
377
+ MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")
378
  MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
379
  USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
380
  ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
 
588
  # --- DeepSeek-R1 branch ---
589
  if text.strip().lower().startswith("@deepseekr1"):
590
  prompt = text[len("@deepseekr1"):].strip()
591
+ # Directly return the response from the API
592
  response = chat_response(prompt)
593
  yield response
594
  return