Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import time | |
import asyncio | |
import tempfile | |
from threading import Thread | |
import base64 | |
import shutil | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image | |
import edge_tts | |
import trimesh | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
Qwen2VLForConditionalGeneration, | |
AutoProcessor, | |
) | |
from transformers.image_utils import load_image | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline | |
from diffusers.utils import export_to_ply | |
# ----------------------------------------------------------------------------- | |
# Global constants and helper functions | |
# ----------------------------------------------------------------------------- | |
MAX_SEED = np.iinfo(np.int32).max | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def glb_to_data_url(glb_path: str) -> str: | |
""" | |
Reads a GLB file from disk and returns a data URL with a base64 encoded representation. | |
(Not used in this method.) | |
""" | |
with open(glb_path, "rb") as f: | |
data = f.read() | |
b64_data = base64.b64encode(data).decode("utf-8") | |
return f"data:model/gltf-binary;base64,{b64_data}" | |
# ----------------------------------------------------------------------------- | |
# Model class for Text-to-3D Generation (ShapE) | |
# ----------------------------------------------------------------------------- | |
class Model: | |
def __init__(self): | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16) | |
self.pipe.to(self.device) | |
# Ensure the text encoder is in half precision to avoid dtype mismatches. | |
if torch.cuda.is_available(): | |
try: | |
self.pipe.text_encoder = self.pipe.text_encoder.half() | |
except AttributeError: | |
pass | |
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16) | |
self.pipe_img.to(self.device) | |
# Use getattr with a default value to avoid AttributeError if text_encoder is missing. | |
if torch.cuda.is_available(): | |
text_encoder_img = getattr(self.pipe_img, "text_encoder", None) | |
if text_encoder_img is not None: | |
self.pipe_img.text_encoder = text_encoder_img.half() | |
def to_glb(self, ply_path: str) -> str: | |
mesh = trimesh.load(ply_path) | |
# Rotate the mesh for proper orientation | |
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0]) | |
mesh.apply_transform(rot) | |
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0]) | |
mesh.apply_transform(rot) | |
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False) | |
mesh.export(mesh_path.name, file_type="glb") | |
return mesh_path.name | |
def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str: | |
generator = torch.Generator(device=self.device).manual_seed(seed) | |
images = self.pipe( | |
prompt, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_steps, | |
output_type="mesh", | |
).images | |
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b") | |
export_to_ply(images[0], ply_path.name) | |
return self.to_glb(ply_path.name) | |
def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str: | |
generator = torch.Generator(device=self.device).manual_seed(seed) | |
images = self.pipe_img( | |
image, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_steps, | |
output_type="mesh", | |
).images | |
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b") | |
export_to_ply(images[0], ply_path.name) | |
return self.to_glb(ply_path.name) | |
# ----------------------------------------------------------------------------- | |
# Gradio UI configuration | |
# ----------------------------------------------------------------------------- | |
DESCRIPTION = """ | |
# QwQ Edge 💬 | |
""" | |
css = ''' | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
#duplicate-button { | |
margin: auto; | |
color: #fff; | |
background: #1565c0; | |
border-radius: 100vh; | |
} | |
''' | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# ----------------------------------------------------------------------------- | |
# Load Models and Pipelines for Chat, Image, and Multimodal Processing | |
# ----------------------------------------------------------------------------- | |
# Load the text-only model and tokenizer (for pure text chat) | |
model_id = "prithivMLmods/FastThink-0.5B-Tiny" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
model.eval() | |
# Voices for text-to-speech | |
TTS_VOICES = [ | |
"en-US-JennyNeural", # @tts1 | |
"en-US-GuyNeural", # @tts2 | |
] | |
# Load multimodal processor and model (e.g. for OCR and image processing) | |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
# ----------------------------------------------------------------------------- | |
# Asynchronous text-to-speech | |
# ----------------------------------------------------------------------------- | |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"): | |
"""Convert text to speech using Edge TTS and save as MP3""" | |
communicate = edge_tts.Communicate(text, voice) | |
await communicate.save(output_file) | |
return output_file | |
# ----------------------------------------------------------------------------- | |
# Utility function to clean conversation history | |
# ----------------------------------------------------------------------------- | |
def clean_chat_history(chat_history): | |
""" | |
Filter out any chat entries whose "content" is not a string. | |
This helps prevent errors when concatenating previous messages. | |
""" | |
cleaned = [] | |
for msg in chat_history: | |
if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
cleaned.append(msg) | |
return cleaned | |
# ----------------------------------------------------------------------------- | |
# Stable Diffusion XL Pipeline for Image Generation | |
# ----------------------------------------------------------------------------- | |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation | |
sd_pipe = StableDiffusionXLPipeline.from_pretrained( | |
MODEL_ID_SD, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
use_safetensors=True, | |
add_watermarker=False, | |
).to(device) | |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config) | |
if torch.cuda.is_available(): | |
sd_pipe.text_encoder = sd_pipe.text_encoder.half() | |
if USE_TORCH_COMPILE: | |
sd_pipe.compile() | |
if ENABLE_CPU_OFFLOAD: | |
sd_pipe.enable_model_cpu_offload() | |
def save_image(img: Image.Image) -> str: | |
"""Save a PIL image with a unique filename and return the path.""" | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def generate_image_fn( | |
prompt: str, | |
negative_prompt: str = "", | |
use_negative_prompt: bool = False, | |
seed: int = 1, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 3, | |
num_inference_steps: int = 25, | |
randomize_seed: bool = False, | |
use_resolution_binning: bool = True, | |
num_images: int = 1, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
"""Generate images using the SDXL pipeline.""" | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
options = { | |
"prompt": [prompt] * num_images, | |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, | |
"width": width, | |
"height": height, | |
"guidance_scale": guidance_scale, | |
"num_inference_steps": num_inference_steps, | |
"generator": generator, | |
"output_type": "pil", | |
} | |
if use_resolution_binning: | |
options["use_resolution_binning"] = True | |
images = [] | |
# Process in batches | |
for i in range(0, num_images, BATCH_SIZE): | |
batch_options = options.copy() | |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE] | |
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None: | |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE] | |
if device.type == "cuda": | |
with torch.autocast("cuda", dtype=torch.float16): | |
outputs = sd_pipe(**batch_options) | |
else: | |
outputs = sd_pipe(**batch_options) | |
images.extend(outputs.images) | |
image_paths = [save_image(img) for img in images] | |
return image_paths, seed | |
# ----------------------------------------------------------------------------- | |
# Text-to-3D Generation using the ShapE Pipeline | |
# ----------------------------------------------------------------------------- | |
def generate_3d_fn( | |
prompt: str, | |
seed: int = 1, | |
guidance_scale: float = 15.0, | |
num_steps: int = 64, | |
randomize_seed: bool = False, | |
): | |
""" | |
Generate a 3D model from text using the ShapE pipeline. | |
Returns a tuple of (glb_file_path, used_seed). | |
""" | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
model3d = Model() | |
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps) | |
return glb_path, seed | |
# ----------------------------------------------------------------------------- | |
# Chat Generation Function with support for @tts, @image, and @3d commands | |
# ----------------------------------------------------------------------------- | |
def generate( | |
input_dict: dict, | |
chat_history: list[dict], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
): | |
""" | |
Generates chatbot responses with support for multimodal input, TTS, image generation, | |
and 3D model generation. | |
Special commands: | |
- "@tts1" or "@tts2": triggers text-to-speech. | |
- "@image": triggers image generation using the SDXL pipeline. | |
- "@3d": triggers 3D model generation using the ShapE pipeline. | |
""" | |
text = input_dict["text"] | |
files = input_dict.get("files", []) | |
# --- 3D Generation branch --- | |
if text.strip().lower().startswith("@3d"): | |
prompt = text[len("@3d"):].strip() | |
yield "Generating 3D model..." | |
glb_path, used_seed = generate_3d_fn( | |
prompt=prompt, | |
seed=1, | |
guidance_scale=15.0, | |
num_steps=64, | |
randomize_seed=True, | |
) | |
# Instead of embedding via data URL, copy the GLB file to a static folder. | |
static_folder = os.path.join(os.getcwd(), "static") | |
if not os.path.exists(static_folder): | |
os.makedirs(static_folder) | |
new_filename = f"mesh_{uuid.uuid4()}.glb" | |
new_filepath = os.path.join(static_folder, new_filename) | |
shutil.copy(glb_path, new_filepath) | |
# Reference the file via a relative URL. | |
html_output = f''' | |
<script type="module" src="https://unpkg.com/@google/model-viewer/dist/model-viewer.min.js"></script> | |
<model-viewer src="/static/{new_filename}" alt="3D Model" auto-rotate camera-controls | |
style="width: 100%; height: 400px;"></model-viewer> | |
''' | |
yield gr.HTML(html_output) | |
return | |
# --- Image Generation branch --- | |
if text.strip().lower().startswith("@image"): | |
prompt = text[len("@image"):].strip() | |
yield "Generating image..." | |
image_paths, used_seed = generate_image_fn( | |
prompt=prompt, | |
negative_prompt="", | |
use_negative_prompt=False, | |
seed=1, | |
width=1024, | |
height=1024, | |
guidance_scale=3, | |
num_inference_steps=25, | |
randomize_seed=True, | |
use_resolution_binning=True, | |
num_images=1, | |
) | |
yield gr.Image(image_paths[0]) | |
return | |
# --- Text and TTS branch --- | |
tts_prefix = "@tts" | |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3)) | |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None) | |
if is_tts and voice_index: | |
voice = TTS_VOICES[voice_index - 1] | |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip() | |
conversation = [{"role": "user", "content": text}] | |
else: | |
voice = None | |
text = text.replace(tts_prefix, "").strip() | |
conversation = clean_chat_history(chat_history) | |
conversation.append({"role": "user", "content": text}) | |
if files: | |
if len(files) > 1: | |
images = [load_image(image) for image in files] | |
elif len(files) == 1: | |
images = [load_image(files[0])] | |
else: | |
images = [] | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield "Thinking..." | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
else: | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
"input_ids": input_ids, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"top_p": top_p, | |
"top_k": top_k, | |
"temperature": temperature, | |
"num_beams": 1, | |
"repetition_penalty": repetition_penalty, | |
} | |
t = Thread(target=model.generate, kwargs=generation_kwargs) | |
t.start() | |
outputs = [] | |
for new_text in streamer: | |
outputs.append(new_text) | |
yield "".join(outputs) | |
final_response = "".join(outputs) | |
yield final_response | |
if is_tts and voice: | |
output_file = asyncio.run(text_to_speech(final_response, voice)) | |
yield gr.Audio(output_file, autoplay=True) | |
# ----------------------------------------------------------------------------- | |
# Gradio Chat Interface Setup and Launch | |
# ----------------------------------------------------------------------------- | |
demo = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
], | |
examples=[ | |
["@tts1 Who is Nikola Tesla, and why did he die?"], | |
["@3d A birthday cupcake with cherry"], | |
[{"text": "summarize the letter", "files": ["examples/1.png"]}], | |
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"], | |
["Write a Python function to check if a number is prime."], | |
["@tts2 What causes rainbows to form?"], | |
], | |
cache_examples=False, | |
type="messages", | |
description=DESCRIPTION, | |
css=css, | |
fill_height=True, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
) | |
if __name__ == "__main__": | |
# To serve the generated GLB files, add the static directory. | |
demo.queue(max_size=20).launch(share=True, static_dirs={"static": "static"}) |