Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,047 Bytes
a85c4cf a29f7c2 a85c4cf a29f7c2 573a8ee 218cef6 a85c4cf a29f7c2 a85c4cf a29f7c2 a85c4cf a29f7c2 a85c4cf a29f7c2 573a8ee a29f7c2 218cef6 a29f7c2 a85c4cf 6c36967 a85c4cf a29f7c2 a85c4cf a29f7c2 a85c4cf a29f7c2 a85c4cf a29f7c2 a85c4cf a29f7c2 a85c4cf a29f7c2 a85c4cf a29f7c2 c44519e a29f7c2 c44519e a29f7c2 218cef6 a29f7c2 a85c4cf a29f7c2 218cef6 a85c4cf a29f7c2 218cef6 a85c4cf a29f7c2 72cda6b a29f7c2 56aa407 573a8ee 7017a9b f485ff1 a29f7c2 a85c4cf a29f7c2 a85c4cf 218cef6 322b3ab 218cef6 a29f7c2 a85c4cf a29f7c2 a85c4cf 218cef6 a29f7c2 a85c4cf 218cef6 a85c4cf 56aa407 a85c4cf c44519e 56aa407 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
import os
import random
import uuid
import json
import time
import asyncio
import tempfile
from threading import Thread
import base64
import shutil
import re
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import trimesh
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
AutoProcessor,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
from diffusers.utils import export_to_ply
# -----------------------------------------------------------------------------
# Global constants and helper functions
# -----------------------------------------------------------------------------
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def glb_to_data_url(glb_path: str) -> str:
"""
Reads a GLB file from disk and returns a data URL with a base64 encoded representation.
(Not used in this method.)
"""
with open(glb_path, "rb") as f:
data = f.read()
b64_data = base64.b64encode(data).decode("utf-8")
return f"data:model/gltf-binary;base64,{b64_data}"
# -----------------------------------------------------------------------------
# Model class for Text-to-3D Generation (ShapE)
# -----------------------------------------------------------------------------
class Model:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
self.pipe.to(self.device)
# Ensure the text encoder is in half precision to avoid dtype mismatches.
if torch.cuda.is_available():
try:
self.pipe.text_encoder = self.pipe.text_encoder.half()
except AttributeError:
pass
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
self.pipe_img.to(self.device)
# Use getattr with a default value to avoid AttributeError if text_encoder is missing.
if torch.cuda.is_available():
text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
if text_encoder_img is not None:
self.pipe_img.text_encoder = text_encoder_img.half()
def to_glb(self, ply_path: str) -> str:
mesh = trimesh.load(ply_path)
# Rotate the mesh for proper orientation
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
mesh.apply_transform(rot)
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
mesh.apply_transform(rot)
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
mesh.export(mesh_path.name, file_type="glb")
return mesh_path.name
def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str:
generator = torch.Generator(device=self.device).manual_seed(seed)
images = self.pipe(
prompt,
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
output_type="mesh",
).images
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
export_to_ply(images[0], ply_path.name)
return self.to_glb(ply_path.name)
def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str:
generator = torch.Generator(device=self.device).manual_seed(seed)
images = self.pipe_img(
image,
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
output_type="mesh",
).images
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
export_to_ply(images[0], ply_path.name)
return self.to_glb(ply_path.name)
# -----------------------------------------------------------------------------
# New Tools for Web Functionality using DuckDuckGo and smolagents
# -----------------------------------------------------------------------------
from typing import Any, Optional
from smolagents.tools import Tool
import duckduckgo_search
class DuckDuckGoSearchTool(Tool):
name = "web_search"
description = "Performs a duckduckgo web search based on your query (think a Google search) then returns the top search results."
inputs = {'query': {'type': 'string', 'description': 'The search query to perform.'}}
output_type = "string"
def __init__(self, max_results=10, **kwargs):
super().__init__()
self.max_results = max_results
try:
from duckduckgo_search import DDGS
except ImportError as e:
raise ImportError(
"You must install package `duckduckgo_search` to run this tool: for instance run `pip install duckduckgo-search`."
) from e
self.ddgs = DDGS(**kwargs)
def forward(self, query: str) -> str:
results = self.ddgs.text(query, max_results=self.max_results)
if len(results) == 0:
raise Exception("No results found! Try a less restrictive/shorter query.")
postprocessed_results = [
f"[{result['title']}]({result['href']})\n{result['body']}" for result in results
]
return "## Search Results\n\n" + "\n\n".join(postprocessed_results)
class VisitWebpageTool(Tool):
name = "visit_webpage"
description = "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
inputs = {'url': {'type': 'string', 'description': 'The url of the webpage to visit.'}}
output_type = "string"
def __init__(self, *args, **kwargs):
self.is_initialized = False
def forward(self, url: str) -> str:
try:
import requests
from markdownify import markdownify
from requests.exceptions import RequestException
from smolagents.utils import truncate_content
except ImportError as e:
raise ImportError(
"You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests`."
) from e
try:
# Send a GET request to the URL with a 20-second timeout
response = requests.get(url, timeout=20)
response.raise_for_status() # Raise an exception for bad status codes
# Convert the HTML content to Markdown
markdown_content = markdownify(response.text).strip()
# Remove multiple line breaks
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
return truncate_content(markdown_content, 10000)
except requests.exceptions.Timeout:
return "The request timed out. Please try again later or check the URL."
except RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
# -----------------------------------------------------------------------------
# Gradio UI configuration
# -----------------------------------------------------------------------------
DESCRIPTION = """
# Agent Dino 🌠
"""
css = '''
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: #fff;
background: #1565c0;
border-radius: 100vh;
}
'''
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# -----------------------------------------------------------------------------
# Load Models and Pipelines for Chat, Image, and Multimodal Processing
# -----------------------------------------------------------------------------
# Load the text-only model and tokenizer (for pure text chat)
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
# Voices for text-to-speech
TTS_VOICES = [
"en-US-JennyNeural", # @tts1
"en-US-GuyNeural", # @tts2
]
# Load multimodal processor and model (e.g. for OCR and image processing)
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
# -----------------------------------------------------------------------------
# Asynchronous text-to-speech
# -----------------------------------------------------------------------------
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
"""Convert text to speech using Edge TTS and save as MP3"""
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
# -----------------------------------------------------------------------------
# Utility function to clean conversation history
# -----------------------------------------------------------------------------
def clean_chat_history(chat_history):
"""
Filter out any chat entries whose "content" is not a string.
This helps prevent errors when concatenating previous messages.
"""
cleaned = []
for msg in chat_history:
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
# -----------------------------------------------------------------------------
# Stable Diffusion XL Pipeline for Image Generation
# -----------------------------------------------------------------------------
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
MODEL_ID_SD,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True,
add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
if torch.cuda.is_available():
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
if USE_TORCH_COMPILE:
sd_pipe.compile()
if ENABLE_CPU_OFFLOAD:
sd_pipe.enable_model_cpu_offload()
def save_image(img: Image.Image) -> str:
"""Save a PIL image with a unique filename and return the path."""
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
@spaces.GPU(duration=60, enable_queue=True)
def generate_image_fn(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 1,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
num_inference_steps: int = 25,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
num_images: int = 1,
progress=gr.Progress(track_tqdm=True),
):
"""Generate images using the SDXL pipeline."""
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device=device).manual_seed(seed)
options = {
"prompt": [prompt] * num_images,
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
# Process in batches
for i in range(0, num_images, BATCH_SIZE):
batch_options = options.copy()
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
if device.type == "cuda":
with torch.autocast("cuda", dtype=torch.float16):
outputs = sd_pipe(**batch_options)
else:
outputs = sd_pipe(**batch_options)
images.extend(outputs.images)
image_paths = [save_image(img) for img in images]
return image_paths, seed
# -----------------------------------------------------------------------------
# Text-to-3D Generation using the ShapE Pipeline
# -----------------------------------------------------------------------------
@spaces.GPU(duration=120, enable_queue=True)
def generate_3d_fn(
prompt: str,
seed: int = 1,
guidance_scale: float = 15.0,
num_steps: int = 64,
randomize_seed: bool = False,
):
"""
Generate a 3D model from text using the ShapE pipeline.
Returns a tuple of (glb_file_path, used_seed).
"""
seed = int(randomize_seed_fn(seed, randomize_seed))
model3d = Model()
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
return glb_path, seed
# -----------------------------------------------------------------------------
# Chat Generation Function with support for @tts, @image, @3d, and now @web commands
# -----------------------------------------------------------------------------
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
"""
Generates chatbot responses with support for multimodal input, TTS, image generation,
3D model generation, and web search/visit.
Special commands:
- "@tts1" or "@tts2": triggers text-to-speech.
- "@image": triggers image generation using the SDXL pipeline.
- "@3d": triggers 3D model generation using the ShapE pipeline.
- "@web": triggers a web search or webpage visit. Use "visit" after @web to fetch a page.
"""
text = input_dict["text"]
files = input_dict.get("files", [])
# --- 3D Generation branch ---
if text.strip().lower().startswith("@3d"):
prompt = text[len("@3d"):].strip()
yield "Hold tight, generating a 3D mesh GLB file....."
glb_path, used_seed = generate_3d_fn(
prompt=prompt,
seed=1,
guidance_scale=15.0,
num_steps=64,
randomize_seed=True,
)
# Copy the GLB file to a static folder.
static_folder = os.path.join(os.getcwd(), "static")
if not os.path.exists(static_folder):
os.makedirs(static_folder)
new_filename = f"mesh_{uuid.uuid4()}.glb"
new_filepath = os.path.join(static_folder, new_filename)
shutil.copy(glb_path, new_filepath)
yield gr.File(new_filepath)
return
# --- Image Generation branch ---
if text.strip().lower().startswith("@image"):
prompt = text[len("@image"):].strip()
yield "Generating image..."
image_paths, used_seed = generate_image_fn(
prompt=prompt,
negative_prompt="",
use_negative_prompt=False,
seed=1,
width=1024,
height=1024,
guidance_scale=3,
num_inference_steps=25,
randomize_seed=True,
use_resolution_binning=True,
num_images=1,
)
yield gr.Image(image_paths[0])
return
# --- Web Search/Visit branch ---
if text.strip().lower().startswith("@web"):
web_command = text[len("@web"):].strip()
# If the command starts with "visit", then treat the rest as a URL
if web_command.lower().startswith("visit"):
url = web_command[len("visit"):].strip()
yield "Visiting webpage..."
visitor = VisitWebpageTool()
content = visitor.forward(url)
yield content
else:
# Otherwise, treat the rest as a search query.
query = web_command
yield "Perform a web search ..."
searcher = DuckDuckGoSearchTool()
results = searcher.forward(query)
yield results
return
# --- Text and TTS branch ---
tts_prefix = "@tts"
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
if is_tts and voice_index:
voice = TTS_VOICES[voice_index - 1]
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
conversation = [{"role": "user", "content": text}]
else:
voice = None
text = text.replace(tts_prefix, "").strip()
conversation = clean_chat_history(chat_history)
conversation.append({"role": "user", "content": text})
if files:
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
]
}]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield "Thinking..."
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generation_kwargs)
t.start()
outputs = []
for new_text in streamer:
outputs.append(new_text)
yield "".join(outputs)
final_response = "".join(outputs)
yield final_response
if is_tts and voice:
output_file = asyncio.run(text_to_speech(final_response, voice))
yield gr.Audio(output_file, autoplay=True)
# -----------------------------------------------------------------------------
# Gradio Chat Interface Setup and Launch
# -----------------------------------------------------------------------------
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
["@tts2 What causes rainbows to form?"],
["@3d A birthday cupcake with cherry"],
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
["Write a Python Code String Reverse With Example!"],
["@web latest breakthroughs in renewable energy"],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
css=css,
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
)
# Ensure the static folder exists
if not os.path.exists("static"):
os.makedirs("static")
# Mount the static folder onto the FastAPI app so that GLB files are served.
from fastapi.staticfiles import StaticFiles
demo.app.mount("/static", StaticFiles(directory="static"), name="static")
if __name__ == "__main__":
# Launch without the unsupported static_dirs parameter.
demo.queue(max_size=20).launch(share=True) |