Ferris2dotOh / app.py
Craig Pretzinger
Updated runtime
1d9da65
raw
history blame
3.83 kB
import gradio as gr
import openai
import os
import requests
from transformers import BertTokenizer, BertForSequenceClassification
import torch
import faiss
import numpy as np
import json
def clean_payload(payload):
# Remove "data:" prefix and clean newline characters
cleaned_payload = payload.lstrip("data:").rstrip("\n")
try:
json_payload = json.loads(cleaned_payload)
except json.JSONDecodeError as e:
print(f"JSON decoding error: {e}")
json_payload = None
return json_payload
# API Keys and Org ID
openai.api_key = os.getenv("OPENAI_API_KEY")
openai.organization = os.getenv("OPENAI_ORG_ID")
serper_api_key = os.getenv("SERPER_API_KEY")
# Load PubMedBERT tokenizer and model
tokenizer = BertTokenizer.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract")
model = BertForSequenceClassification.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract", num_labels=2)
# FAISS setup for vector search
dimension = 768
index = faiss.IndexFlatL2(dimension)
# Function to embed text (PubMedBERT)
def embed_text(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
outputs = model(**inputs, output_hidden_states=True)
hidden_state = outputs.hidden_states[-1]
return hidden_state.mean(dim=1).detach().numpy()
# Function to retrieve info from PubMedBERT
def handle_fda_query(query):
inputs = tokenizer(query, return_tensors="pt", padding="max_length", truncation=True, max_length=512)
outputs = model(**inputs)
logits = outputs.logits
prediction = torch.argmax(logits, dim=1).item()
# Simulate a meaningful FDA-related response
if prediction == 1:
return f"FDA Query Processed: '{query}' contains important regulatory information."
else:
return f"FDA Query Processed: '{query}' seems to be general and not regulatory-heavy."
# Function to enhance info via GPT-4o-mini
def enhance_with_gpt4o(fda_response):
try:
response = openai.ChatCompletion.create(
model="gpt-4o-mini", # Correct model
messages=[{"role": "system", "content": "You are an expert FDA assistant."}, {"role": "user", "content": f"Enhance this FDA info: {fda_response}"}],
max_tokens=150
)
return response['choices'][0]['message']['content']
except Exception as e:
return f"Error: {str(e)}"
def respond(message, system_message, max_tokens, temperature, top_p):
try:
# First retrieve info via PubMedBERT
fda_response = handle_fda_query(message)
# Stream the enhanced response via GPT-4o-mini using the client
enhanced_response = ""
for chat_message in client.chat_completion(...):
payload = json.loads(chat_message.lstrip("data:").rstrip("\n"))
enhanced_response += payload["content"] # Or however the payload structure works
# Return both the PubMedBERT result and the enhanced version
return f"Original Info from PubMedBERT: {fda_response}\n\nEnhanced Info via GPT-4o-mini: {enhanced_response}"
except Exception as e:
return f"Error: {str(e)}"
# Gradio Interface
demo = gr.Interface(
fn=respond,
inputs=[
gr.Textbox(label="Enter your FDA query", placeholder="Ask Ferris2.0 anything FDA-related."),
gr.Textbox(value="You are Ferris2.0, the most advanced FDA Regulatory Assistant.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
],
outputs="text",
)
if __name__ == "__main__":
demo.launch()