Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,27 @@
|
|
1 |
-
#import librosa
|
2 |
import torch
|
3 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
4 |
import streamlit as st
|
5 |
from audio_recorder_streamlit import audio_recorder
|
6 |
|
7 |
audio_bytes = audio_recorder(pause_threshold=3.0, sample_rate=16_000)
|
|
|
8 |
if audio_bytes:
|
9 |
st.audio(audio_bytes, format="audio/wav")
|
10 |
|
11 |
-
#
|
12 |
-
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
13 |
-
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
14 |
-
|
15 |
-
#load audio file
|
16 |
-
#speech, rate = librosa.load("/hip-voice.m4a",sr=16000)
|
17 |
-
|
18 |
-
#import IPython.display as display
|
19 |
-
#display.Audio("batman1.wav", autoplay=True)
|
20 |
-
|
21 |
-
input_values = tokenizer(audio_bytes, return_tensors = 'pt').input_values
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
#
|
29 |
-
transcriptions = tokenizer.decode(predicted_ids[0])
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
3 |
import streamlit as st
|
4 |
from audio_recorder_streamlit import audio_recorder
|
5 |
|
6 |
audio_bytes = audio_recorder(pause_threshold=3.0, sample_rate=16_000)
|
7 |
+
|
8 |
if audio_bytes:
|
9 |
st.audio(audio_bytes, format="audio/wav")
|
10 |
|
11 |
+
# Load pre-trained model and tokenizer
|
12 |
+
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
13 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Tokenize the audio input
|
16 |
+
input_values = tokenizer(audio_bytes, return_tensors='pt').input_values
|
17 |
|
18 |
+
# Perform inference
|
19 |
+
logits = model(input_values).logits
|
20 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
21 |
|
22 |
+
# Decode the audio to generate text
|
23 |
+
transcriptions = tokenizer.decode(predicted_ids[0])
|
24 |
|
25 |
+
st.write(transcriptions)
|
26 |
+
else:
|
27 |
+
st.write("No audio recorded.")
|