File size: 6,212 Bytes
5dbf895
 
 
 
 
 
 
 
 
c3d8cc1
5dbf895
 
 
 
 
 
 
 
 
 
 
c3d8cc1
5dbf895
 
 
 
 
c3d8cc1
5dbf895
 
 
 
 
 
 
 
c3d8cc1
5dbf895
 
 
 
 
c3d8cc1
5dbf895
 
 
 
 
 
 
 
 
 
 
 
c3d8cc1
5dbf895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d8cc1
5dbf895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeacce
c3d8cc1
5dbf895
 
 
 
 
 
 
 
 
 
 
c3d8cc1
5dbf895
 
 
 
 
 
 
fbeacce
c3d8cc1
5dbf895
 
 
 
 
 
 
 
 
 
 
c3d8cc1
5dbf895
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import gradio as gr
from PIL import Image
import numpy as np
import io, os, zipfile, tempfile, time
from spm import spm_augment

TITLE = "Shuffle PatchMix (SPM) Augmentation"
DESC = """
Upload an image, choose **number of patches (N×N)**, and generate SPM-augmented variants.
You can optionally **enable overlap** with feathered blending for smoother seams.
For batch processing, upload a .zip of images (PNG/JPG/JPEG), and download a .zip of outputs.
"""

def _parse_grid(grid_choice: str) -> int:
    # Expect strings like "2x2", "4x4", "8x8", "16x16"
    try:
        n = int(grid_choice.lower().split("x")[0])
        return max(1, n)
    except Exception:
        return 4

def run_single(image, grid_choice, use_overlap, overlap_px, mix_prob, beta_a, beta_b, num_augs, seed):
    if image is None:
        return []
    outs = []
    base_seed = int(seed) if seed is not None else None
    N = _parse_grid(grid_choice)
    ov = int(overlap_px) if use_overlap else 0
    for i in range(num_augs):
        s = (base_seed + i) if base_seed is not None else None
        out_img = spm_augment(
            image,
            num_patches=N,
            mix_prob=float(mix_prob),
            beta_a=float(beta_a),
            beta_b=float(beta_b),
            overlap_px=ov,
            seed=s
        )
        outs.append(out_img)
    return outs

def run_batch(zip_file, grid_choice, use_overlap, overlap_px, mix_prob, beta_a, beta_b, seed):
    if zip_file is None:
        return None, "Please upload a .zip file with images."
    tempdir = tempfile.mkdtemp()
    outdir = os.path.join(tempdir, "outputs")
    os.makedirs(outdir, exist_ok=True)
    # Extract
    with zipfile.ZipFile(zip_file, 'r') as zf:
        zf.extractall(tempdir)
    # Collect images
    valid_exts = {".png", ".jpg", ".jpeg"}
    count_in, count_out = 0, 0
    N = _parse_grid(grid_choice)
    ov = int(overlap_px) if use_overlap else 0
    for root_dir, _, files in os.walk(tempdir):
        for f in files:
            if f.lower().endswith(tuple(valid_exts)):
                in_path = os.path.join(root_dir, f)
                try:
                    img = Image.open(in_path).convert("RGB")
                except Exception:
                    continue
                count_in += 1
                out_img = spm_augment(
                    img,
                    num_patches=N,
                    mix_prob=float(mix_prob),
                    beta_a=float(beta_a),
                    beta_b=float(beta_b),
                    overlap_px=ov,
                    seed=int(seed) if seed is not None else None
                )
                rel = os.path.relpath(in_path, tempdir)
                out_path = os.path.join(outdir, rel)
                os.makedirs(os.path.dirname(out_path), exist_ok=True)
                out_img.save(out_path)
                count_out += 1
    # Zip results
    out_zip = os.path.join(tempdir, f"spm_outputs_{int(time.time())}.zip")
    with zipfile.ZipFile(out_zip, "w", compression=zipfile.ZIP_DEFLATED) as zf:
        for root_dir, _, files in os.walk(outdir):
            for f in files:
                p = os.path.join(root_dir, f)
                arc = os.path.relpath(p, outdir)
                zf.write(p, arcname=arc)
    msg = f"Processed {count_out}/{count_in} files."
    return out_zip, msg

with gr.Blocks() as demo:
    gr.Markdown(f"# {TITLE}")
    gr.Markdown(DESC)
    with gr.Tabs():
        with gr.TabItem("Single Image"):
            with gr.Row():
                with gr.Column(scale=1):
                    inp = gr.Image(label="Input image", type="pil")
                    grid_choice = gr.Radio(choices=["2x2","4x4","8x8","16x16"], value="4x4", label="Grid (N×N)")
                    use_overlap = gr.Checkbox(value=True, label="Enable Overlap Patch Blend")
                    overlap_px = gr.Slider(1, 64, value=8, step=1, label="Overlap (px)")
                    mix_prob = gr.Slider(0, 1, value=0.5, step=0.05, label="Mix probability (per patch)")
                    with gr.Row():
                        beta_a = gr.Slider(0.1, 8, value=2.0, step=0.1, label="Beta α")
                        beta_b = gr.Slider(0.1, 8, value=2.0, step=0.1, label="Beta β")
                    num_augs = gr.Slider(1, 12, value=4, step=1, label="Number of variants")
                    seed = gr.Number(value=42, precision=0, label="Seed (int, optional)")
                    run_btn = gr.Button("Generate")
                with gr.Column(scale=1):
                    gallery = gr.Gallery(label="Augmented outputs", columns=2, height="auto")
            run_btn.click(
                fn=run_single,
                inputs=[inp, grid_choice, use_overlap, overlap_px, mix_prob, beta_a, beta_b, num_augs, seed],
                outputs=[gallery]
            )
        with gr.TabItem("Batch (.zip)"):
            with gr.Row():
                with gr.Column(scale=1):
                    zip_in = gr.File(label="Upload a .zip of images", file_types=[".zip"])
                    grid_choice_b = gr.Radio(choices=["2x2","4x4","8x8","16x16"], value="4x4", label="Grid (N×N)")
                    use_overlap_b = gr.Checkbox(value=True, label="Enable Overlap Patch Blend")
                    overlap_px_b = gr.Slider(1, 64, value=8, step=1, label="Overlap (px)")
                    mix_prob_b = gr.Slider(0, 1, value=0.5, step=0.05, label="Mix probability (per patch)")
                    with gr.Row():
                        beta_a_b = gr.Slider(0.1, 8, value=2.0, step=0.1, label="Beta α")
                        beta_b_b = gr.Slider(0.1, 8, value=2.0, step=0.1, label="Beta β")
                    seed_b = gr.Number(value=42, precision=0, label="Seed (int, optional)")
                    run_b = gr.Button("Process Zip")
                with gr.Column(scale=1):
                    zip_out = gr.File(label="Download results (.zip)")
                    status = gr.Markdown()
            run_b.click(
                fn=run_batch,
                inputs=[zip_in, grid_choice_b, use_overlap_b, overlap_px_b, mix_prob_b, beta_a_b, beta_b_b, seed_b],
                outputs=[zip_out, status]
            )

if __name__ == "__main__":
    demo.launch()