Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from PIL import Image
|
4 |
+
import google.generativeai as genai
|
5 |
+
import json
|
6 |
+
from datetime import datetime
|
7 |
+
|
8 |
+
# Configure Gemini API key (ideally load from environment variable in production)
|
9 |
+
# Using st.secrets for better security in Streamlit
|
10 |
+
api_key = "AIzaSyDWm-Z7X4H-b41r2ZRN61UfABdv81D2Gxo" # In production, use st.secrets["GEMINI_API_KEY"]
|
11 |
+
genai.configure(api_key=api_key)
|
12 |
+
|
13 |
+
# --- Generation Configuration and Chat Session Setup ---
|
14 |
+
generation_config = {
|
15 |
+
"temperature": 0.8, # Slightly reduced for more consistent medical responses
|
16 |
+
"top_p": 0.95,
|
17 |
+
"top_k": 40,
|
18 |
+
"max_output_tokens": 8192,
|
19 |
+
"response_mime_type": "application/json", # Changed to JSON for structured parsing
|
20 |
+
}
|
21 |
+
|
22 |
+
model = genai.GenerativeModel(
|
23 |
+
model_name="gemini-1.5-flash",
|
24 |
+
generation_config=generation_config,
|
25 |
+
)
|
26 |
+
|
27 |
+
# Define the system prompt for structured JSON responses
|
28 |
+
SYSTEM_PROMPT = """
|
29 |
+
As a highly skilled medical practitioner specializing in image analysis,
|
30 |
+
you are tasked with examining medical images for a renowned hospital.
|
31 |
+
Your expertise is crucial in identifying any anomalies, diseases, or health issues
|
32 |
+
that may be present in the images.
|
33 |
+
|
34 |
+
Your responsibilities:
|
35 |
+
1. **Detailed Analysis**: Thoroughly examine the image for abnormalities.
|
36 |
+
2. **Analysis Report**: Document findings clearly.
|
37 |
+
3. **Recommendations**: Suggest necessary tests or treatments.
|
38 |
+
4. **Treatments**: Provide possible treatments for better recovery.
|
39 |
+
5. **Risk Level**: Indicate the severity level as "Low", "Medium", "High", or "Critical".
|
40 |
+
|
41 |
+
**Important Notes**:
|
42 |
+
- Only respond if the image is related to human health.
|
43 |
+
- If the image is unclear, state: "Unable to determine based on the uploaded image."
|
44 |
+
- Include a disclaimer about consulting with a doctor.
|
45 |
+
|
46 |
+
Format the response as a JSON object with these fields:
|
47 |
+
{
|
48 |
+
"image_type": "String describing the type of medical image",
|
49 |
+
"detailed_analysis": "Thorough analysis of visible features",
|
50 |
+
"analysis_report": "Summary of findings",
|
51 |
+
"recommendations": "Suggested tests or follow-ups",
|
52 |
+
"treatments": "Possible treatment options",
|
53 |
+
"risk_level": "Low/Medium/High/Critical",
|
54 |
+
"confidence_score": 75,
|
55 |
+
"areas_of_concern": ["List of specific areas or features of concern"]
|
56 |
+
}
|
57 |
+
"""
|
58 |
+
|
59 |
+
|
60 |
+
# --- Functions for UI Components ---
|
61 |
+
|
62 |
+
def display_sidebar():
|
63 |
+
with st.sidebar:
|
64 |
+
st.title("π₯ Cure Connect")
|
65 |
+
st.subheader("Your AI Medical Assistant")
|
66 |
+
|
67 |
+
st.markdown("---")
|
68 |
+
st.markdown("### About This Tool")
|
69 |
+
st.markdown("""
|
70 |
+
Cure Connect uses advanced AI to analyze medical images and provide potential insights.
|
71 |
+
**IMPORTANT:** This tool is for educational purposes only and should not replace professional medical advice.
|
72 |
+
""")
|
73 |
+
|
74 |
+
st.markdown("---")
|
75 |
+
st.markdown("### Supported Image Types")
|
76 |
+
st.markdown("""
|
77 |
+
- X-rays
|
78 |
+
- MRI scans
|
79 |
+
- CT scans
|
80 |
+
- Ultrasound images
|
81 |
+
- Dermatological photos
|
82 |
+
""")
|
83 |
+
|
84 |
+
st.markdown("---")
|
85 |
+
st.markdown("### Usage Tips")
|
86 |
+
st.markdown("""
|
87 |
+
1. Upload a clear medical image
|
88 |
+
2. Click "Analyze Image"
|
89 |
+
3. Review the AI analysis
|
90 |
+
4. Share results with your healthcare provider
|
91 |
+
""")
|
92 |
+
|
93 |
+
|
94 |
+
def create_analysis_card(title, content, color):
|
95 |
+
st.markdown(
|
96 |
+
f"""
|
97 |
+
<div style="
|
98 |
+
background-color: {color};
|
99 |
+
padding: 20px;
|
100 |
+
border-radius: 10px;
|
101 |
+
margin-bottom: 10px;
|
102 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
103 |
+
">
|
104 |
+
<h3 style="color: white;">{title}</h3>
|
105 |
+
<p style="color: white;">{content}</p>
|
106 |
+
</div>
|
107 |
+
""",
|
108 |
+
unsafe_allow_html=True
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
def display_risk_gauge(risk_level, confidence):
|
113 |
+
# Map risk levels to numerical values
|
114 |
+
risk_values = {"Low": 1, "Medium": 2, "High": 3, "Critical": 4}
|
115 |
+
risk_value = risk_values.get(risk_level, 0)
|
116 |
+
|
117 |
+
# Colors for different risk levels
|
118 |
+
colors = {
|
119 |
+
"Low": "#4CAF50", # Green
|
120 |
+
"Medium": "#FFC107", # Amber
|
121 |
+
"High": "#FF5722", # Deep Orange
|
122 |
+
"Critical": "#F44336" # Red
|
123 |
+
}
|
124 |
+
|
125 |
+
col1, col2 = st.columns(2)
|
126 |
+
|
127 |
+
with col1:
|
128 |
+
st.markdown("### Risk Assessment")
|
129 |
+
st.markdown(
|
130 |
+
f"""
|
131 |
+
<div style="
|
132 |
+
background-color: {colors.get(risk_level, "#607D8B")};
|
133 |
+
color: white;
|
134 |
+
text-align: center;
|
135 |
+
padding: 20px;
|
136 |
+
border-radius: 10px;
|
137 |
+
font-size: 24px;
|
138 |
+
font-weight: bold;
|
139 |
+
">
|
140 |
+
{risk_level}
|
141 |
+
</div>
|
142 |
+
""",
|
143 |
+
unsafe_allow_html=True
|
144 |
+
)
|
145 |
+
|
146 |
+
with col2:
|
147 |
+
st.markdown("### AI Confidence")
|
148 |
+
# Ensure confidence is an integer before using it
|
149 |
+
if isinstance(confidence, str):
|
150 |
+
try:
|
151 |
+
confidence = int(float(confidence))
|
152 |
+
except (ValueError, TypeError):
|
153 |
+
confidence = 75 # Default value if conversion fails
|
154 |
+
|
155 |
+
st.progress(confidence / 100)
|
156 |
+
st.markdown(f"<h1 style='text-align: center;'>{confidence}%</h1>", unsafe_allow_html=True)
|
157 |
+
|
158 |
+
|
159 |
+
def generate_pdf_report(analysis_data, image):
|
160 |
+
# In a real app, you would implement PDF generation here
|
161 |
+
st.download_button(
|
162 |
+
label="π Download PDF Report",
|
163 |
+
data=f"Sample report for {analysis_data['image_type']} - {datetime.now().strftime('%Y-%m-%d')}",
|
164 |
+
file_name="medical_report.txt",
|
165 |
+
mime="text/plain"
|
166 |
+
)
|
167 |
+
|
168 |
+
|
169 |
+
# --- Main Application UI ---
|
170 |
+
st.set_page_config(page_title='Cure Connect - Medical Image Analytics',
|
171 |
+
page_icon='π₯',
|
172 |
+
layout='wide',
|
173 |
+
initial_sidebar_state='expanded')
|
174 |
+
|
175 |
+
# Apply custom CSS for better styling
|
176 |
+
st.markdown("""
|
177 |
+
<style>
|
178 |
+
.main {
|
179 |
+
padding: 2rem;
|
180 |
+
background-color: #f8f9fa;
|
181 |
+
}
|
182 |
+
.stButton button {
|
183 |
+
background-color: #4285F4;
|
184 |
+
color: white;
|
185 |
+
border-radius: 10px;
|
186 |
+
padding: 0.5rem 1rem;
|
187 |
+
font-weight: bold;
|
188 |
+
}
|
189 |
+
h1, h2, h3 {
|
190 |
+
color: #01579B;
|
191 |
+
}
|
192 |
+
.stProgress > div > div {
|
193 |
+
background-color: #4285F4;
|
194 |
+
}
|
195 |
+
.disclaimer {
|
196 |
+
background-color: #FFECB3;
|
197 |
+
padding: 10px;
|
198 |
+
border-radius: 5px;
|
199 |
+
border-left: 5px solid #FFC107;
|
200 |
+
}
|
201 |
+
</style>
|
202 |
+
""", unsafe_allow_html=True)
|
203 |
+
|
204 |
+
# Display sidebar
|
205 |
+
display_sidebar()
|
206 |
+
|
207 |
+
# Main content area
|
208 |
+
st.title("π©Ί Cure Connect - Medical Image Analysis")
|
209 |
+
st.subheader("AI-assisted diagnostic support platform")
|
210 |
+
|
211 |
+
st.markdown("""
|
212 |
+
This platform uses advanced AI to analyze medical images and provide potential insights.
|
213 |
+
Upload your medical scan below to get started.
|
214 |
+
""")
|
215 |
+
|
216 |
+
# Create tabs for different sections
|
217 |
+
tab1, tab2, tab3 = st.tabs(["π Analysis", "βΉοΈ How It Works", "β FAQ"])
|
218 |
+
|
219 |
+
with tab1:
|
220 |
+
# File upload with enhanced UI
|
221 |
+
col1, col2 = st.columns([1, 1])
|
222 |
+
|
223 |
+
with col1:
|
224 |
+
st.markdown("### Upload Medical Image")
|
225 |
+
uploaded_file = st.file_uploader('Select an image file',
|
226 |
+
type=['png', 'jpg', 'jpeg'],
|
227 |
+
help="Upload a clear, high-resolution medical image")
|
228 |
+
|
229 |
+
analyze_col, clear_col = st.columns([1, 1])
|
230 |
+
with analyze_col:
|
231 |
+
analyze_button = st.button('π Analyze Image', use_container_width=True)
|
232 |
+
with clear_col:
|
233 |
+
clear_button = st.button('ποΈ Clear Results', use_container_width=True)
|
234 |
+
|
235 |
+
# Analysis section
|
236 |
+
if analyze_button and uploaded_file:
|
237 |
+
try:
|
238 |
+
# Open and display the uploaded image
|
239 |
+
img = Image.open(uploaded_file)
|
240 |
+
|
241 |
+
with col2:
|
242 |
+
st.markdown("### Uploaded Medical Image")
|
243 |
+
st.image(img, use_column_width=True)
|
244 |
+
st.caption("The AI model will analyze this image to identify potential areas of concern.")
|
245 |
+
|
246 |
+
# Show processing indicator
|
247 |
+
with st.spinner('Analyzing image... Please wait'):
|
248 |
+
# In a production app, you would handle the JSON response properly
|
249 |
+
# For this prototype, we'll simulate a structured response
|
250 |
+
try:
|
251 |
+
# Generate analysis using the system prompt and the uploaded image
|
252 |
+
response = model.generate_content([SYSTEM_PROMPT, img])
|
253 |
+
|
254 |
+
# Try to parse as JSON first
|
255 |
+
try:
|
256 |
+
# Parse JSON response
|
257 |
+
analysis_data = json.loads(response.text)
|
258 |
+
except json.JSONDecodeError:
|
259 |
+
# If not valid JSON, create a structured dictionary from text
|
260 |
+
analysis_data = {
|
261 |
+
"image_type": "Medical scan",
|
262 |
+
"detailed_analysis": response.text[:500],
|
263 |
+
"analysis_report": "See detailed analysis",
|
264 |
+
"recommendations": "Consult with a healthcare professional",
|
265 |
+
"treatments": "To be determined by your doctor",
|
266 |
+
"risk_level": "Medium",
|
267 |
+
"confidence_score": 75,
|
268 |
+
"areas_of_concern": ["Unable to parse specific areas from text response"]
|
269 |
+
}
|
270 |
+
|
271 |
+
# Ensure confidence_score is an integer
|
272 |
+
if isinstance(analysis_data["confidence_score"], str):
|
273 |
+
try:
|
274 |
+
analysis_data["confidence_score"] = int(float(analysis_data["confidence_score"]))
|
275 |
+
except (ValueError, TypeError):
|
276 |
+
analysis_data["confidence_score"] = 75 # Default if conversion fails
|
277 |
+
|
278 |
+
# Display results in a structured format
|
279 |
+
st.markdown("## Analysis Results")
|
280 |
+
st.markdown(f"### Image Type: {analysis_data['image_type']}")
|
281 |
+
|
282 |
+
# Display risk gauge
|
283 |
+
display_risk_gauge(analysis_data['risk_level'], analysis_data['confidence_score'])
|
284 |
+
|
285 |
+
# Display color-coded analysis sections
|
286 |
+
st.markdown("### Key Findings")
|
287 |
+
create_analysis_card("Detailed Analysis", analysis_data['detailed_analysis'], "#0277BD")
|
288 |
+
create_analysis_card("Analysis Report", analysis_data['analysis_report'], "#00897B")
|
289 |
+
create_analysis_card("Recommendations", analysis_data['recommendations'], "#7B1FA2")
|
290 |
+
create_analysis_card("Treatments", analysis_data['treatments'], "#C2185B")
|
291 |
+
|
292 |
+
# Areas of concern
|
293 |
+
st.markdown("### Areas of Concern")
|
294 |
+
for i, area in enumerate(analysis_data['areas_of_concern']):
|
295 |
+
st.markdown(f"- **Area {i + 1}:** {area}")
|
296 |
+
|
297 |
+
# Disclaimer
|
298 |
+
st.markdown("""
|
299 |
+
<div class="disclaimer">
|
300 |
+
<strong>β οΈ IMPORTANT DISCLAIMER:</strong> This analysis is for informational purposes only
|
301 |
+
and should not be considered medical advice. Always consult with a qualified healthcare
|
302 |
+
professional for proper diagnosis and treatment options.
|
303 |
+
</div>
|
304 |
+
""", unsafe_allow_html=True)
|
305 |
+
|
306 |
+
# Generate PDF report option
|
307 |
+
st.markdown("### Export Options")
|
308 |
+
generate_pdf_report(analysis_data, img)
|
309 |
+
|
310 |
+
except Exception as e:
|
311 |
+
st.error(f"Error processing response: {str(e)}")
|
312 |
+
|
313 |
+
except Exception as e:
|
314 |
+
st.error(f"Analysis failed: {str(e)}")
|
315 |
+
st.error("Please ensure you're using a valid medical image format (JPEG/PNG)")
|
316 |
+
|
317 |
+
with tab2:
|
318 |
+
st.markdown("## How Cure Connect Works")
|
319 |
+
|
320 |
+
st.markdown("""
|
321 |
+
### 1. Image Analysis
|
322 |
+
When you upload a medical image, our AI system processes it using advanced computer vision techniques
|
323 |
+
to identify patterns, abnormalities, and potential areas of concern.
|
324 |
+
|
325 |
+
### 2. Medical Knowledge Base
|
326 |
+
The analysis is informed by a vast medical knowledge base that includes information about various
|
327 |
+
conditions, diseases, and their visual presentations in medical imaging.
|
328 |
+
|
329 |
+
### 3. Risk Assessment
|
330 |
+
Based on the analysis, the system provides a risk assessment categorized as:
|
331 |
+
- **Low Risk** (Green): Minor or no abnormalities detected
|
332 |
+
- **Medium Risk** (Amber): Notable findings that should be discussed with a healthcare provider
|
333 |
+
- **High Risk** (Orange): Significant findings that require prompt medical attention
|
334 |
+
- **Critical Risk** (Red): Urgent findings that may require immediate medical intervention
|
335 |
+
|
336 |
+
### 4. Confidence Score
|
337 |
+
The confidence score indicates how certain the AI is about its analysis based on image quality,
|
338 |
+
clarity of findings, and comparison with known patterns.
|
339 |
+
""")
|
340 |
+
|
341 |
+
# Add a simple diagram
|
342 |
+
st.markdown("""
|
343 |
+
```
|
344 |
+
βββββββββββββββ βββββββββββββββ βββββββββββββββ βββββββββββββββ
|
345 |
+
β Image β β AI β β Analysis β β Results β
|
346 |
+
β Upload β -> β Processing β -> β Generation β -> β Display β
|
347 |
+
βββββββββββββββ βββββββββββββββ βββββββββββββββ βββββββββββββββ
|
348 |
+
```
|
349 |
+
""")
|
350 |
+
|
351 |
+
st.warning("""
|
352 |
+
**Remember:** While our system uses advanced technology to analyze medical images,
|
353 |
+
it is designed to be a supportive tool for healthcare professionals, not a replacement
|
354 |
+
for proper medical consultation and diagnosis.
|
355 |
+
""")
|
356 |
+
|
357 |
+
with tab3:
|
358 |
+
st.markdown("## Frequently Asked Questions")
|
359 |
+
|
360 |
+
faq_data = [
|
361 |
+
{
|
362 |
+
"question": "How accurate is the AI analysis?",
|
363 |
+
"answer": "The AI analysis provides an estimated confidence score with each result. However, accuracy varies based on image quality, the type of medical condition, and other factors. Always consult with a healthcare professional for accurate diagnosis."
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"question": "Is my medical data secure?",
|
367 |
+
"answer": "We take data privacy seriously. Your uploaded images are processed securely and not stored permanently unless explicitly requested. All processing is done in compliance with healthcare data protection standards."
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"question": "What types of medical images can I upload?",
|
371 |
+
"answer": "The system can analyze various medical imaging types including X-rays, MRIs, CT scans, ultrasound images, and dermatological photos. The clearer and higher resolution the image, the better the analysis will be."
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"question": "How should I use the results?",
|
375 |
+
"answer": "Consider the results as informational insights that you can discuss with your healthcare provider. The analysis is meant to supplement, not replace, professional medical advice."
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"question": "Can I share the analysis with my doctor?",
|
379 |
+
"answer": "Yes! You can download a PDF report of the analysis to share with your healthcare provider. This can be a helpful starting point for discussions about your health concerns."
|
380 |
+
}
|
381 |
+
]
|
382 |
+
|
383 |
+
for i, faq in enumerate(faq_data):
|
384 |
+
with st.expander(f"{i + 1}. {faq['question']}"):
|
385 |
+
st.markdown(faq['answer'])
|
386 |
+
|
387 |
+
st.markdown("""
|
388 |
+
### Have more questions?
|
389 |
+
If you have any other questions about using Cure Connect, please contact our support team
|
390 |
+
at [email protected].
|
391 |
+
""")
|