import streamlit as st from langchain_core.messages import AIMessage, HumanMessage from langchain_community.document_loaders import WebBaseLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma import os from transformers import BertTokenizer, BertModel from bert_score import BERTScorer from dotenv import load_dotenv from langchain_groq import ChatGroq from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.chains import create_history_aware_retriever, create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings def get_vectorstore_from_url(url): if os.path.exists("store/un_sdg_chroma_cosine"): vector_store = Chroma(persist_directory="store/un_sdg_chroma_cosine", embedding_function=SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")) return vector_store # get the text in document form else: loader = WebBaseLoader(url) document = loader.load() # split the document into chunks text_splitter = RecursiveCharacterTextSplitter() document_chunks = text_splitter.split_documents(document) # create a vectorstore from the chunks vector_store = Chroma.from_documents(document_chunks, SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2"),collection_metadata={"hnsw:space": "cosine"}, persist_directory="store/un_sdg_chroma_cosine") return vector_store def get_context_retriever_chain(vector_store): llm = ChatGroq(groq_api_key='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', model_name="mixtral-8x7b-32768") retriever = vector_store.as_retriever() prompt = ChatPromptTemplate.from_messages([ MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), ("user", "Given the above conversation, generate a search query to look up in order to get information relevant to the conversation") ]) retriever_chain = create_history_aware_retriever(llm, retriever, prompt) return retriever_chain def get_conversational_rag_chain(retriever_chain): llm = ChatGroq(groq_api_key='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', model_name="mixtral-8x7b-32768") prompt = ChatPromptTemplate.from_messages([ ("system", "act as a senior customer care excutive and help useres soughting out their quries working noise coumpeny be polite and friendly Answer the user's questions based on the below context:\n\n{context} make sure to provide all the details, if the answer is not in the provided context just say, 'answer is not available in the context', don't provide the wrong answer make sure if the person asks any any externl recomandation only provide information related to noise coumpany only , if user askas you anuthing other than noise coumpany just say 'sorry i can't help you with that'"), MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), ]) stuff_documents_chain = create_stuff_documents_chain(llm,prompt) return create_retrieval_chain(retriever_chain, stuff_documents_chain) def get_response(user_input): retriever_chain = get_context_retriever_chain(st.session_state.vector_store) conversation_rag_chain = get_conversational_rag_chain(retriever_chain) response = conversation_rag_chain.invoke({ "chat_history": st.session_state.chat_history, "input": user_input }) return response['answer'] # app config st.set_page_config(page_title="Chat with websites", page_icon="🤖") st.title("Noise Support Chatbot") def score(text1, text2): # BERTScore calculation scorer = BERTScorer(model_type='bert-base-uncased') P, R, F1 = scorer.score([text1], [text2]) return f"BERTScore Precision: {P.mean():.4f}, Recall: {R.mean():.4f}, F1: {F1.mean():.4f}" if __name__ == "__main__": # session state if os.path.exists("store/un_sdg_chroma_cosine"): st.session_state.vector_store = Chroma(persist_directory="store/un_sdg_chroma_cosine", embedding_function=SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")) if "chat_history" not in st.session_state: st.session_state.chat_history = [ AIMessage(content="Hello, I am a bot. How can I help you?"), ] if "vector_store" not in st.session_state: st.session_state.vector_store = get_vectorstore_from_url('https') # user input user_query = st.chat_input("Type your message here...") if user_query is not None and user_query != "": response = get_response(user_query) st.session_state.chat_history.append(HumanMessage(content=user_query)) st.session_state.chat_history.append(AIMessage(content=response)) docs = st.session_state.vector_store .similarity_search(user_query) t = '' for doc in docs: t += doc.page_content print(score(response,t)) # conversation for message in st.session_state.chat_history: if isinstance(message, AIMessage): with st.chat_message("AI"): st.write(message.content) elif isinstance(message, HumanMessage): with st.chat_message("Human"): st.write(message.content)