Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from bpe_Awadhi import AwadhiBPE
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Initialize the BPE model
|
7 |
+
bpe = AwadhiBPE(vocab_size=4500)
|
8 |
+
|
9 |
+
# Load the model if it exists, otherwise train it
|
10 |
+
def initialize_model():
|
11 |
+
if os.path.exists('Awadhi_bpe.json'):
|
12 |
+
bpe.load('Awadhi_bpe.json')
|
13 |
+
else:
|
14 |
+
# Load the text and train the model
|
15 |
+
with open('sunderkand_awdhi.txt', 'r', encoding='utf-8') as f:
|
16 |
+
text = f.read()
|
17 |
+
bpe.fit(text)
|
18 |
+
bpe.save('Awadhi_bpe.json')
|
19 |
+
|
20 |
+
def process_text(input_text: str) -> dict:
|
21 |
+
"""Process input text and return tokenization results"""
|
22 |
+
# Tokenize the text
|
23 |
+
tokens = bpe.tokenize(input_text)
|
24 |
+
|
25 |
+
# Calculate compression ratio
|
26 |
+
original_size = len(input_text.encode('utf-8'))
|
27 |
+
tokenized_size = len(tokens) * 2 # Assuming average 2 bytes per token
|
28 |
+
compression_ratio = original_size / tokenized_size
|
29 |
+
|
30 |
+
return {
|
31 |
+
"Tokens": " ".join(tokens[:100]) + "..." if len(tokens) > 100 else " ".join(tokens),
|
32 |
+
"Number of Tokens": len(tokens),
|
33 |
+
"Original Size (bytes)": original_size,
|
34 |
+
"Tokenized Size (bytes)": tokenized_size,
|
35 |
+
"Compression Ratio": f"{compression_ratio:.2f}",
|
36 |
+
"Vocabulary Size": len(bpe.vocab)
|
37 |
+
}
|
38 |
+
|
39 |
+
# Create the Gradio interface
|
40 |
+
def create_interface():
|
41 |
+
with gr.Blocks(title="Awadhi BPE Tokenizer") as demo:
|
42 |
+
gr.Markdown("# Awadhi BPE Tokenizer")
|
43 |
+
gr.Markdown("This tool implements Byte Pair Encoding (BPE) for Awadhi text compression.")
|
44 |
+
|
45 |
+
with gr.Row():
|
46 |
+
with gr.Column():
|
47 |
+
input_text = gr.Textbox(
|
48 |
+
label="Input Awadhi Text",
|
49 |
+
placeholder="Enter Awadhi text here...",
|
50 |
+
lines=5
|
51 |
+
)
|
52 |
+
|
53 |
+
with gr.Column():
|
54 |
+
output = gr.JSON(label="Tokenization Results")
|
55 |
+
|
56 |
+
submit_btn = gr.Button("Tokenize")
|
57 |
+
submit_btn.click(
|
58 |
+
fn=process_text,
|
59 |
+
inputs=input_text,
|
60 |
+
outputs=output
|
61 |
+
)
|
62 |
+
|
63 |
+
gr.Markdown("""
|
64 |
+
### About
|
65 |
+
- This tokenizer uses BPE to compress Awadhi text
|
66 |
+
- Vocabulary size is limited to 4500 tokens
|
67 |
+
- Aims for a compression ratio > 3.2
|
68 |
+
""")
|
69 |
+
|
70 |
+
return demo
|
71 |
+
|
72 |
+
# Initialize model and create interface
|
73 |
+
initialize_model()
|
74 |
+
demo = create_interface()
|
75 |
+
|
76 |
+
# Launch the app
|
77 |
+
if __name__ == "__main__":
|
78 |
+
demo.launch()
|